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Abstract. The recent file storage applications built on top of peer-to-peer dis-
tributed hash tables lack search capabilities. We believe that search is an important
part of any document publication system. To that end, we have designed and ana-
lyzed a distributed search engine based on a distributed hash table. Our simulation
results predict that our search engine can answer an average query in under one
second, using under one kilobyte of bandwidth.
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1 Introduction

Recent work on distributed hash tables (DHTs) such as Chord [19], CAN [16], and Pas-
try [17] has addressed some of the scalability and reliability problems that plagued earlier
peer-to-peer overlay networks such as Napster [14] and Gnutella [8]. However, the useful
keyword searching present in Napster and Gnutella is absent in the DHTs that endeavor
to replace them. In this paper, we present a symmetrically distributed peer-to-peer search
engine based on a DHT and intended to serve DHT-based file storage systems.
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Fig. 1. Distributing an inverted index
across a peer-to-peer network.

Applications built using the current generation
of DHTs request documents using an opaque key.
The means for choosing the key is left for the appli-
cation built on top of the DHT to determine. For ex-
ample, the Chord File System, CFS [6], uses hashes
of content blocks as keys. Freenet [5, 9], which
shares some characteristics of DHTs, uses hashes
of filenames as keys. In each case, users must have
a single, unique name to retrieve content. No func-
tionality is provided for keyword searches.

The system described in this paper provides key-
word search functionality for a DHT-based file sys-
tem or archival storage system, to map keyword
queries to the unique routing keys described above. It does so by mapping each key-
word to a node in the DHT that will store a list of documents containing that keyword.
Figure 1 shows how keywords in the index map into the hash range and, in turn, to nodes
in the DHT.
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Fig. 2. Number of keywords per search op-
eration in the IRCache for a ten-day period
in January 2002.

We believe that end-user latency is the
most important performance metric for a
search engine. Most end-user latency in a dis-
tributed search engine comes from network
transfer times. Thus, minimizing the number
of bytes sent and the number of times they are
sent is crucial. Both bytes and hops are easy
to minimize for queries that can be answered
by a single host. Most queries, however, con-
tain several keywords and must be answered
by several cooperating hosts. Using a trace of
99,405 queries sent through the IRCache proxy
system to Web search engines during a ten-
day period in January 2002, we determined that
71.5% of queries contain two or more keywords. The entire distribution of keywords
per query is shown in Figure 2. Because multiple-keyword queries dominate the search
workload, optimizing them is important for end-user performance. This paper focuses on
minimizing network traffic for multiple-keyword queries.

1.1 Non-goals

One extremely useful feature of distributed hash tables is that they provide a simple
service model that hides request routing, churn costs, load balancing, and unavailability.
Most DHTs route requests to nodes that can serve them in expected O(lgn) steps, for
networks of n hosts. They keep churn costs [11] – the costs associated with managing
node joins and departures – logarithmic with the size of the network. Using consistent
hashing [10] they divide load roughly evenly among available hosts. Finally, they perform
replication to ensure availability even when individual nodes fail. Our design uses a DHT
as its base; thus, it does not directly address these issues.

1.2 Overview

This paper describes our search model, design, and simulation experiments as follows.
In Section 2 we describe several aspects of the peer-to-peer search problem space, along
with the parts of the problem space we chose to explore. Section 3 describes our ap-
proach to performing peer-to-peer searches efficiently. Section 4 details our simulation
environment, and Section 5 describes the simulation results. We present related work in
Section 6 and conclude in Section 7.

2 System Model

Fundamentally, search is the task of associating keywords with document identifiers and
later retrieving document identifiers that match combinations of keywords. Most text
searching systems use inverted indices, which map each word found in any document
to a list of the documents in which the word appears. Beyond this simple description,
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Fig. 3. A horizontally partitioned index stores part of every keyword match-list on each node, often
divided by document identifiers. Here we divide the index into document identifiers 1-3, 4-6, and
7-9. A vertically partitioned index assigns each keyword to a single node.

many design trade-offs exist. How will the index be partitioned, if at all? Should it be
distributed, or would a centralized index suffice? In what order will matching documents
be listed? How are document changes reflected in the index? We address these questions
below.

2.1 Partitioning

Although a sufficiently small index need not be partitioned at all, our target application
is a data set large enough to overwhelm the storage and processing capacities of any
single node. Thus, some partitioning scheme is required. There are two straightforward
partitioning schemes: horizontal and vertical.

For each keyword an index stores, it must store a match-list of identifiers for all
of the documents containing the keyword. A horizontally partitioned index divides this
list among several nodes, either sequentially or by partitioning the document identifier
space. Google [3] operates in this manner. A vertically partitioned index assigns each
keyword, undivided, to a single node. Figure 3 shows a small sample index partitioned
horizontally and vertically, with K1 through K5 representing keywords and doc1 through
doc9 representing documents that contain those keywords.

A vertically partitioned index minimizes the cost of searches by ensuring that no
more than k servers must participate in answering a query containing k keywords. A hor-
izontally partitioned index requires that all nodes be contacted, regardless of the number
of keywords in the query. However, horizontal indices partitioned by document identifier
can insert or update a document at a single node, while vertically partitioned indices re-
quire that up to k servers participate to insert or update a document with k keywords. As
long as more servers participate in the overlay than there are keywords associated with
an average document, these costs favor vertical partitioning. Furthermore, in file sys-
tems, most files change rarely, and those that change often change in bursts and may be
removed shortly after creation, allowing us to optimize updates by propagating changes
lazily. In archival storage systems, files change rarely if at all. Thus, we believe that
queries will outnumber updates for our proposed uses, further increasing the cost advan-
tage for vertically partitioned systems.

Vertically partitioned indices send queries to a constant number of hosts, while hor-
izontally partitioned indices must broadcast queries to all nodes. Thus, the throughput
of a vertically partitioned index theoretically grows linearly as more nodes are added.



Query throughput in a horizontally partitioned index does not benefit at all from addi-
tional nodes. Thus, we chose vertical partitioning for our search engine.

2.2 Centralized or Distributed Organization

Google has had great success providing centralized search services for the Web. However,
we believe that for peer-to-peer file systems and archival storage networks, a distributed
search service is better than a centralized one. First, centralized systems provide a single
point of failure. Failures may be network outages; denial-of-service attacks, as plagued
several Web sites in February of 2000; or censorship by domestic or foreign authorities.
In all such cases, a replicated distributed system may be more robust. Second, many uses
of peer-to-peer distributed systems depend on users voluntarily contributing computing
resources. A centralized search engine would concentrate both load and trust on a small
number of hosts, which is impractical if those hosts are voluntarily contributed by end
users.

Both centralized and distributed search systems benefit from replication. Replica-
tion improves availability and throughput in exchange for additional hardware and up-
date costs. A distributed search engine benefits more from replication, however, because
replicas are less susceptible to correlated failures such as attacks or network outages.
Distributed replicas may also allow nodes closer to each other or to the client to respond
to queries, reducing latency and network traffic.

2.3 Ranking of Results

One important feature of search engines is the order in which results are presented to the
user. Many documents may match a given set of keywords, but some may be more useful
to the end user than others. Google’s PageRank algorithm [15] has successfully exploited
the hyperlinked nature of the Web to give high scores to pages linked to by other pages
with high scores. Several search engines have successfully used words’ proximity to each
other or to the beginning of the page to rank results. Peer-to-peer systems lack the linking
structure necessary for PageRank but may be able to take advantage of word position or
proximity heuristics. We will discuss specific interactions between ranking techniques
and our design in Section 3.5 after we have presented the design.

2.4 Update Discovery

A search engine must discover new, removed, or modified documents. Web search en-
gines have traditionally relied on enumerating the entire Web using crawlers, which re-
sults in either lag or inefficiency if the frequency of crawling differs from the frequency
of updates for a given page. Popular file-sharing systems use a “push” model for up-
dates instead: clients that have new or modified content notify servers directly. Even with
pushed updates, the process of determining keywords and reporting them to server should
occur automatically to ensure uniformity.

The Web could support either crawled or pushed updates. Crawled updates are cur-
rently the norm. Peer-to-peer services may lack hyperlinks or any other mechanism for
enumeration, leaving them dependent on pushed updates. We believe that pushed updates
are superior because they promote both efficiency and currency of index information.



2.5 Placement

All storage systems need techniques for placing and finding content. Distributed search
systems additionally need techniques for placing index partitions. We use a DHT to map
keywords to nodes for the index, and we claim that the placement of content is an orthog-
onal problem. There is little or no benefit to placing documents and their keywords in the
same place. First, very few documents indicated as results for a search are later retrieved;
thus, most locality would be wasted. Second, there is no overlap between an index entry
and the document it indicates; both still must be retrieved and sent over the network. A
search engine is a layer of indirection. It is expected that documents and their keywords
may appear in unrelated locations.

3 Efficient Support for Peer-to-Peer Search

In the previous section, we discussed the architecture and potential benefits of a fully
distributed peer-to-peer search infrastructure. The primary contribution of this work is to
demonstrate the feasibility of this approach with respect to individual end user requests.
Conducting a search for a single keyword consists of looking up the keyword’s mapping
in the index to reveal all of the documents containing that keyword. This involves con-
tacting a single remote server, an operation with network costs comparable to accessing
a traditional search service. A boolean “AND” search consists of looking up the sets
for each keyword and returning the intersection. As with traditional search engines, we
return a small subset of the matching documents. This operation requires contacting mul-
tiple peers across the wide area, and the requisite intersection operation across the sets
returned by each peer can become prohibitively expensive, both in terms of consumed
network bandwidth and the latency incurred from transmitting this data across the wide
area.

Consider the example in Figure 4(a), which shows a simple network with servers sA

and sB. Server sA contains the set of documents A for a given keyword kA, and server sB

contains the set of documents B for another keyword kB. |A| and |B| are the number of
documents containing kA and kB, respectively. A∩B is the set of all documents containing
both kA and kB.

The primary challenge in performing efficient keyword searches in a distributed in-
verted index is limiting the amount of bandwidth used for multiple-keyword searches.
The naive approach, shown in Figure 4(a), consists of the first server, sA, sending its
entire set of matching document IDs, A, to the second server, sB, so that sB can calcu-
late A∩B and send the results to the client. This is wasteful because the intersection,
A∩B, is likely to be far smaller than A, resulting in most of the information in A get-
ting discarded at sB. Furthermore, the size of A (i.e., the number of occurrences of the
keyword kA) scales roughly with the number of documents in the system. Thus, the cost
of naive search operations grows linearly with the number of documents in the system.
We propose three techniques to limit wasted bandwidth, to ensure scalability, and to re-
duce end-client latency: Bloom filters, caches, and incremental results. We discuss each
of these approaches in turn and present analytical results showing the potential benefits
of each technique under a variety of conditions before exploring these tradeoffs in more
detail through simulation in Section 5.
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in the set B∩F(A) that server sB sends
back to server sA.

Fig. 4. Network architecture and protocol overview

3.1 Bloom filters

A Bloom filter [2, 7, 13] is a hash-based data structure that summarizes membership in
a set. By sending a Bloom filter based on A instead of sending A itself, we reduce the
amount of communication required for sB to determine A∩B. The membership test re-
turns false positives with a tunable, predictable probability and never returns false nega-
tives. Thus, the intersection calculated by sB will contain all of the true intersection, as
well as a few hits that contain only kB and not kA. The number of false positives falls
exponentially as the size of the Bloom filter increases.

Given optimal choice of hash functions, the probability of a false positive is

p f p = .6185m/n, (1)

where m is the number of bits in the Bloom filter and n is the number of elements in the
set [7]. Thus, to maintain a fixed probability of false positives, the size of the Bloom filter
must be proportional to the number of elements represented.

Our method for using Bloom filters to determine remote set intersections is shown
in Figure 4(b) and proceeds as follows. A and B are the document sets to intersect, each
containing a large number of document IDs for the keywords kA and kB, respectively.
The client wishes to retrieve the intersection A∩B. Server sA sends a Bloom filter F(A)
of set A to server sB. Server sB tests each member of set B for membership in F(A).
Server sB sends the matching elements, B∩F(A), back to server sA, along with some
textual context for each match. Server sA removes the false positives from sB’s results by
calculating A∩ (B∩F(A)), which is equivalent to A∩B.



False positives in B∩F(A) do not affect the correctness of the final intersection but
do waste bandwidth. They are eliminated in the final step, when sA intersects B∩F(A)
against A.

It is also possible to send B∩F(A) directly from sB to the client rather than first
sending it to sA and removing the false positives. Doing so eliminates the smaller transfer
and its associated latency at the expense of correctness. Given reasonable values for |A|,
|B|, the size of each document record, and the cache hit rate (see Section 3.2), the false-
positive rate may be as high as 0.05 or as low as 0.00003. This means that B∩F(A) will
have from 0.00003|B| to 0.05|B| extra elements that do not contain kA. For example, if 5%
of the elements of B actually contain kA, then returning the rough intersection B∩F(A)

to the client results in between 0.00003|B|
(0.05+0.00003)|B| = 0.06% and 0.05|B|

(0.05+0.05)|B| = 50% of the
results being incorrect and not actually containing kA, where each expression represents
the ratio of the number of false positives to the total number of elements in B∩F(A). The
decision to use this optimization is made at run time, when the parameters are known and
p f p can be predicted. Server sA may choose an m value slightly larger than optimal to
reduce p f p and improve the likelihood that sB can return B∩F(A) directly to the client.

The total number of bits sent during the exchange shown in Figure 4(b) is m +
p f p|B| j + |A∩B| j, where j is the number of bits in each document identifier. For this
paper, we assume that document identifiers are 128-bit hashes of document contents;
thus, j is 128. The final term, |A∩B| j, is the size of the intersection itself. It can be ig-
nored in our optimization, because it represents the resulting intersection, which must be
sent regardless of our choice of algorithm.

The resulting total number of excess bits sent (i.e., excluding the intersection itself)
is

m+ p f p|B| j.

Substituting for p f p from Equation 1 yields the total number of excess bits as

m+ .6185m/|A||B| j. (2)

Taking the first derivative with respect to m and solving for zero yields an optimal Bloom
filter size of

m = |A| log.6185

(

2.081
|A|
|B| j

)

. (3)

Figure 5(a) shows the minimum number of excess bits sent for three sets of values
for |A|, |B|, and j. The optimal m for any given |A|, |B|, and j is unique and directly
determines the minimum number of excess bits sent. For example, when |A| and |B|
are 10,000 and j is 128, m is 85,734, and the minimum number of excess bits sent is
106,544, representing 12.01 : 1 compression when compared to the cost of sending all
1,280,000 bits (10,000 documents, each with a 128-bit ID) of either A or B.

As also shown in Figure 5(a), performance is not symmetric when A and B differ in
size. With j constant at 128, the minimum number of excess bits for |A| = 2,000 and
|B| = 10,000 is 28,008, lower than the minimum number for |A| = 10,000 and |B| =
2,000, which is 73,046. 28,008 bits represents 9.14 : 1 compression when compared
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Fig. 5. Effects of Bloom filter size and cache hit rate

with the 256,000 bits needed to send all of A. The server with the smaller set should
always initiate the transfer.

Our Bloom filter intersection technique can be expanded to arbitrary numbers of key-
words. Server sA sends F(A) to server sB, which sends F(B∩F(A)) to sC, and so on.
The final server, sZ , sends its intersection back to sA. Each server that encoded its trans-
mission using a Bloom filter must process the intersection once more to remove any
false positives introduced by its filter. Thus, the intersection is sent to each server ex-
cept sZ a second time. As above, the expected number of excess bits is minimized when
|A| ≤ |B| ≤ |C| ≤ . . . ≤ |Z|.

3.2 Caches

Caching can eliminate the need for sA to send A or F(A) if server sB already has A or F(A)
stored locally. We derive more benefit from caching Bloom filters than from caching en-
tire document match lists because the smaller size of the Bloom representation means
that a cache of fixed size can store data for more keywords. The benefit of caching de-
pends on the presence of locality in the list of words searched for by a user population
at any given time. To quantify this intuition, we use the same ten-day IRCache trace de-
scribed in Section 1 to determine word search popularity. There were a total of 251,768
words searched for across the 99,405 searches, 45,344 of them unique. Keyword popu-
larity roughly followed a Zipf distribution, with the most common keyword searched for
4,365 times. The dominance of popular keywords suggests that even a small cache of
either the Bloom filter or the actual document list on A is likely to produce high hit rates.

When server sB already has the Bloom filter F(A) in its cache, a search operation for
the keywords kA and kB may skip the first step, in which server sA sends its Bloom filter
to sB. On average, a Bloom filter will be in another server’s cache with probability r equal
to the cache hit rate.



The excess bits formula in Equation (2) can be adapted to consider cache hit rate, r,
as follows:

(1− r)m+ .6185m/|A||B| j (4)

Setting the derivative of this with respect to m to zero yields the optimal m as

m = |A| log.6185

[

(1− r)2.081
|A|
|B| j

]

. (5)

Figure 5(b) shows the effect of cache hit rates on the excess bits curves, assuming
|A| and |B| are both 10,000 and j is 128. Each curve still has a unique minimum. For
example, when the hit rate, r, is 0.5, the minimum excess number of bits sent is 60,486,
representing 21.16 : 1 compression when compared with sending A or B. Improvements
in the cache hit rate always reduce the minimum expected number of excess bits and
increase the optimal m. The reduction in the expected number of excess bits sent is nearly
linear with improvements in the hit rate. The optimal m increases because as we become
less likely to send the Bloom filter, we can increase its size slightly to reduce the false-
positive rate. Even with these increases in m, we can store hundreds of cache entries per
megabyte of available local storage. We expect such caching to yield high hit rates given
even moderate locality in the request stream.

Cache consistency is handled with a simple time-to-live field. Updates only occur at a
keyword’s primary location, and slightly stale match list information is acceptable, espe-
cially given the current state of Internet search services, where some degree of staleness
is unavoidable. Thus, more complex consistency protocols should not be necessary.

3.3 Incremental results

Clients rarely need all of the results of a keyword search. By using streaming transfers
and returning only the desired number of results, we can greatly reduce the amount of
information that needs to be sent. This is, in fact, critical for scalability: the number
of results for any given query is roughly proportional to the number of documents in
the network. Thus, the bandwidth cost of returning all results to the client will grow
linearly with the size of the network. Bloom filters and caches can yield a substantial
constant-factor improvement, but neither technique eliminates the linear growth in cost.
Truncating the results is the only way to achieve constant cost independent of the number
of documents in the network.

When a client searches for a fixed number of results, servers sA and sB communicate
incrementally until that number is reached. Server sA sends its Bloom filter in chunks and
server sB sends a block of results (true intersections and false positives) for each chunk
until server sA has enough results to return to the client. Because a single Bloom filter
cannot be divided and still retain any meaning, we divide the set A into chunks and send
a full Bloom filter of each chunk. The chunk size can be set adaptively based on how
many elements of A are likely to be needed to produce the desired number of results.
This protocol is shown in Figure 6. Note that sA and sB overlap their communication: sA

sends F(A2) as sB sends B∩F(A1). This protocol can be extended logically to more than
two participants. Chunks are streamed in parallel from server sA to sB, from sB to sC, and
so on. The protocol is an incremental version of the multi-server protocol described at
the end of Section 3.1.
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Fig. 6. Servers sA and sB send their data
one chunk at a time until the desired inter-
section size is reached.

When the system streams data in chunks,
caches can store several fractional Bloom fil-
ters for each keyword rather than storing the
entire Bloom filter for each keyword. This al-
lows servers to retain or discard partial en-
tries in the cache. A server may get a partial
cache hit for a given keyword if it needs several
chunks but already has some of them stored
locally. Storing only a fraction of each key-
word’s Bloom filter also reduces the amount
of space in the cache that each keyword con-
sumes, which increases the expected hit rate.

Sending Bloom filters incrementally sub-
stantially increases the CPU costs involved in
processing a search. The cost for server sB

to calculate each intersection B∩F(Ai) is the
same as the cost to calculate the entire inter-
section B∩F(A) at once because each element
of B must be tested against each chunk. This
added cost can be avoided by sending contigu-
ous portions of the hash space in each chunk
and indicating to sB which fraction of B (described as a portion of the hash space) it
needs to test against F(A).

3.4 Virtual hosts

One key concern in a peer-to-peer system is the inherent heterogeneity of such sys-
tems. Randomly distributing functionality (e.g., keywords) across the system runs the
risk of assigning a popular keyword to a relatively under-provisioned machine in terms
of memory, CPU, or network capacity. Further, no hash function will uniformly distribute
functionality across a hash range. Thus, individual machines may be assigned dispropor-
tionate numbers of keywords (recall that keywords are assigned to the host whose ID is
closest to it in the hash range). Virtual hosts [6] are one technique to address this poten-
tial limitation. Using this approach, a node participates in a peer-to-peer system as several
logical hosts, proportional to its request processing capacity. A node that participates as
several virtual hosts is assigned proportionally more load, addressing heterogeneous node
capabilities. Thus, a node with ten times the capacity of some baseline measure would
be assigned ten virtual IDs (which means that it is mapped to ten different IDs in the
hash range). An optional system-wide scaling factor for each node’s number of virtual
hosts further reduces the probability that any single node is assigned a disproportionately
large portion of the hash range. This effect is quantified in Section 5, but consider the
following example: with 100 hosts of equal power, it is likely that one or more hosts will
be assigned significantly more than 1% of the hash range. However, with a scaling factor
of 100, it is much less likely that any host will be assigned much more than 1% of the
range because an “unlucky” hash (large portion of the hash region) for one virtual host is



likely to be canceled out by a “lucky” hash (small portion of the hash region) for another
virtual host on the same physical node.

3.5 Discussion

Two of the techniques described here, Bloom filters and caching, yield constant-factor
improvements in terms of the number of bytes sent and the end-to-end query latency.
Bloom filters compress document ID sets by about one order of magnitude, in exchange
for either added latency or a configurable probability of false positives. Caching exploits
re-referencing and sharing in the query workload to reduce the probability that docu-
ment ID sets need to be sent. However, even together, these techniques leave both bytes
sent and end-to-end query time roughly proportional to the number of documents in the
system.

The third technique, incremental results, reduces the number of bytes sent and the
end-to-end query latency to a constant in most cases. As long as the user wants only a
constant number of results, only a constant amount of work will be done, regardless of
how many possible results exist in the system. Incremental results yield no improvement
in some unusual cases, however. If the user searches for several keywords that are indi-
vidually popular but mostly uncorrelated in the document space, there may be a small
but nonzero number of valid results.1 If the number of results is nonzero but smaller than
the number that the client requests, the system must consider the entire search space,
rendering incremental results useless. In cases such as this, the entire search space must
be considered, and incremental results will increase, rather than decrease, the number of
bytes sent and the end-to-end query latency. However, caching may alleviate the problem
if the words used are popular in search queries, and Bloom filters still yield approximately
a ten-to-one compression factor.

We expect that searches containing popular but uncorrelated keywords will be rare. In
our IRCache search trace, most of the queries with small numbers of results had uncom-
mon (often misspelled) keywords. Uncommon keywords—i.e., those with few matching
documents—are easy to handle, as discussed in Section 3.1. The system considers the
least common keyword first, bounding the maximum size of any intersection set sent for
the remainder of the query.

3.6 Ranking of Results

Two of our optimization techniques, Bloom filters and incremental results, complicate
problem of ranking results. Bloom filters roughly convey membership in a set, but they
do not provide the ability to order set members or to convey additional data with each
member, such as a word’s position in a document. The uncompressed response mes-
sage containing B∩F(A) can contain document-ranking or word-position information,
which would give server sA enough information to generate rankings based on both key-
words, kA and kB. However, in Section 3.1, we suggested eliminating this uncompressed

1 One example of a difficult search is “OpenBSD birthday pony,” suggested by David Mazières at
New York University. In recent Google searches, these three keywords match two million, eight
million, and two million documents, respectively. Only fifteen documents contain all three.



response message. Doing so eliminates the ability to consider kA in any ranking tech-
niques.

Incremental results can alleviate the problems with Bloom filters. If each chunk sent
contains document IDs with strictly lower rankings than in previous chunks, then the
first results returned to the client will be the best, though order within a chunk will not
be preserved. However, in Section 3.3 we suggested sending contiguous portions of the
hash space in each chunk to save processing time on server sB. These two techniques are
mutually exclusive.

We believe that ranking documents is more important than eliminating one additional
message or saving processing time. However, this trade-off can be determined at run time
according to user preference.

3.7 Load balancing

A vertically partitioned index distributes keywords randomly, resulting in a binomial
(roughly normal) distribution of the number of keywords on each node. However, key-
word appearance popularity (i.e., the size of the keyword’s match-list) and search popu-
larity are both roughly Zipf-distributed. Keyword appearance popularity determines the
storage required, and keyword search popularity determines processing loads. Both con-
tribute to network loads. The resulting storage, processing, and network loads are less
evenly distributed than with a horizontally partitioned index. Virtual hosts alleviate the
problem by assigning larger loads to more capable nodes, but they do not make load any
more balanced. Increasing the size of the network and the number of documents results in
somewhat more balanced load. As long as the network is over-provisioned, which many
peer-to-peer networks are, we believe that load balancing will not be a problem.

4 Simulation Infrastructure

The simple analysis described above in Section 3 provides some insight into the potential
benefits of our three approaches toward efficiently supporting peer-to-peer search. How-
ever, the actual benefits and tradeoffs depend heavily upon target system characteristics
and access patterns. To test the validity of our approach under a range of realistic circum-
stances, we developed a simulation infrastructure implementing our three techniques. In
this section, we discuss the details of this simulation infrastructure before presenting the
results of our evaluation in Section 5.

4.1 Goals

Our goal in writing the simulator was to test the system with a realistic workload and
to test the effects of parameters and features that did not lend themselves to tractable
analysis. In particular, we tested the effects of the number of hosts in the network, the
use of virtual hosts, the Bloom filter threshold, Bloom filter sizes, caching techniques,
and the use of incremental results. We also tested the system’s sensitivity to varying
network characteristics.



The Bloom filter threshold refers to the document set size below which a host trans-
mits a full list rather than a Bloom-compressed set. For small documents, the total band-
width consumed for transmission to a remote host (for set intersection) may be so small
that it may not be worth the CPU time required to compress the set. Eliminating the
Bloom step further eliminates the need to return to the transmitting host to eliminate
false positives from the intersection. Typically, we find that the extra CPU overhead and
network overhead of returning the result is worth the substantial saving in network band-
width realized by using Bloom filters. In Section 5, we quantify this effect for a variety
of Bloom thresholds.

Bloom filter sizes affect the number of false positives transmitted during the search
process. If the client is willing to accept some probability of false positives (a returned
document containing only a subset of the requested keywords), sufficiently large Bloom
filters can meet the client’s accepted false-positive rate and eliminate the need to revisit
nodes to remove false positives, as described in Section 3.1. That is, small Bloom filters
result in significant compression of a keyword-set size at the cost of either generating
more false positives in the result returned to the client or requiring the transmission of
the intersection back to the originating host for false positive elimination.

4.2 Design

The simulator runs as a single-threaded Java application. We implement the inverted
index, word-to-host mapping, and host measurement (in this case, random generation) in
separate classes so that much of the simulator could be reused in a full implementation
of our protocol. Our simulations use a real document set and search trace. The document
set totals 1.85 GB of HTML data, comprising 1.17 million unique words in 105,593
documents, retrieved by crawling to a recursion depth of five from 100 seed URLs [4].
The searches performed are read from a list of 95,409 searches containing 45,344 unique
keywords. The search trace is the IRCache log file described in Section 1. Note that the
results presented in this paper are restricted to these particular traces. However, we do
not expect the benefits of our techniques to differ significantly for other workloads.

Hosts in the network are generated at random based on configurable distributions for
upload speed, download speed, CPU speed, and local storage capacity. We use three dis-
tributions for network speeds: one with all modems, one with all backbone links, and
one based on the measurements of the Gnutella network performed by Saroiu et al [18].
This last heterogeneous set contains a mixture of modems, broadband connections (ca-
ble/DSL) and high-speed LAN connections. Our CPU speed distribution is roughly a
bell curve, with a mean of 750 MIPS, and our local storage distribution is a heavy-tailed
piece-wise function ranging from 1 MB to 100 MB. We experimented with a broad range
of host characteristics and present the results for this representative subset in this paper.
To generate random latencies, we place hosts at random in a 2,500-mile square grid and
assume that network packets travel an average of 100,000 miles per second.

The time required to send a network message is the propagation time, as determined
by the distance between the hosts involved, plus the transmission time, as determined
by the minimum of the sender’s upload speed and the recipient’s download speed, and
the size of the packet. The total network time for a search is the sum of the latency
and transmission time for all packets sent among server nodes processing the query. We



ignore the time spent by the client sending the initial query and receiving the results
because these times are constant and independent of any search architecture, whether
centralized or distributed.

Document IDs are assumed to be 128 bits. The time required to look up words in a
local index or perform intersections or Bloom filter operations is based on the CPU speed
and the following assumptions for operation costs: 1,500 simple operations per hit to look
up words in an index, 500 simple operations per element to intersect two result sets, and
10,000 simple operations per document ID inserted into a Bloom filter or checked against
a Bloom filter received from another host. We believe that in general, these assumptions
place an upper bound on the CPU cost of these operations. Even with these assumptions,
we find that network time typically dominates CPU time for our target scenarios.

We determine the number of virtual hosts to assign each simulated node based on
its network and CPU speeds when compared to a baseline host. The baseline host has a
57.5 MIPS CPU and 30 Kbit/s network links. These speeds were chosen as those required
to compute and transmit 5,000 Bloom operations per second. Each node is compared to
the baseline host in three categories: upload speed, download speed, and CPU speed.
The nodes’s minimum margin over the baseline host in these three categories is rounded
down and taken to be its number of virtual hosts.

To perform each query, the simulator looks up each keyword in the inverted index,
obtaining up to M results for each, where M is the incremental result size. Each host
intersects its set with the data from the previous host and forwards it to the subsequent
host, as described in Section 3.1. Each node forwards its current intersected set as either
a Bloom filter or a full set, depending on whether or not the set is larger than the Bloom
threshold. After each peer performs its part of the intersection, any node that sent a Bloom
filter in the first pass is potentially revisited to remove false positives. If the number of
resulting documents is at least as large as the the desired number, the search is over.
Otherwise, M is increased adaptively to twice what appears to be needed to produce the
desired number of results, and the search is rerun.

At each step, a host checks its cache to see if it has data for the subsequent host’s
document list in its local cache. If so, it performs the subsequent host’s portion of the
intersection locally and skips that host in the sending sequence.

4.3 Validation

We validated our simulator in two ways. First, we calculated the behavior and perfor-
mance of short, artificial traces by hand and confirmed that the simulator returns the
same results. Second, we varied the Bloom filter size, m, in the simulator and compared
the results to the analytical results presented in Section 3.1. The analytical results shown
in Figure 5(b) closely resemble the simulated results shown in Figure 9(a).

5 Experimental Results

The goal of this section is to understand the performance effects of our proposed tech-
niques on a peer-to-peer search infrastructure. Ideally, we wish to demonstrate that our
proposed peer-to-peer search system scales with system size (total resource consumption
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Fig. 7. Network scaling and virtual hosts

per search grows sub-linearly with the number of participating hosts) and that techniques
such as Bloom filters and caching improve the performance of individual requests. Pri-
marily, we focus on the metric of bytes sent per request. Techniques such as caching and
the use of Bloom filters largely serve to reduce this metric. Reducing bytes per request
has the added benefit of reducing total time spent in the network and hence end-to-end
client perceived latency. We also study the effects of the distribution of network and CPU
characteristics on overall system performance. One challenge with peer-to-peer systems
is addressing the subset of hosts that have significantly less computation power and net-
work bandwidth than is required to support a high-performance search infrastructure.

Finally, although we implemented incremental results, we do not present results for
this technique here because our target document set is not large enough to return large
numbers of hits for most queries. For our workload, this optimization reduces network
utilization by at most 30% in the best case. However, we believe this technique will be
increasingly valuable as the document space increases in size.

5.1 Scalability and Virtual Hosts

A key goal of our work is to demonstrate that a peer-to-peer search infrastructure scales
with the number of participating hosts. Unless otherwise specified, the results presented
in this section all assume the heterogeneous distribution [18] of per-peer network con-
nectivity and the default distribution of CPU power described in Section 4. Caching and
Bloom filters are both initially turned off. As shown in Figure 7(a), increasing the number
of hosts in the simulation has little effect on the total number of bytes sent. With very
small networks, several keywords from a query may be located on a single host, resulting
in entirely local handling of parts of the query. However, beyond 100 hosts, this probabil-



ity becomes insignificant, and each n-keyword query must contact n hosts, independent
of the size of the system.

In addition to demonstrating the scalability of the system, Figures 7(a) and 7(b) also
quantify the benefits of the use of virtual hosts in the system. Recall that when virtual
hosts are turned on, each node is assigned a number of hosts based on its capacity relative
to the predefined baseline described in Section 4. The virtual host scaling factor further
multiplies this number of hosts by some constant value to ensure that each physical host
is assigned a uniform portion of the overall hash range as discussed in Section 4. Overall,
virtual hosts have a small effect on the number of total bytes sent per query. This is
because enabling virtual hosts concentrates data mostly on powerful hosts, increasing
the probability that parts of a query can be handled entirely locally. Virtual host scaling
results in better expected load balancing, which very slightly decreases the amount of
data that must be sent on average.

Although virtual hosts have little effect on how much data must be sent, they can
significantly decrease the amount of time spent sending the data, as shown in Figure 7(b).
By assigning more load to more capable hosts, the virtual hosts technique can cut network
times by nearly 60%. Using virtual host scaling further decreases expected network times
by reducing the probability that a bottleneck host will be assigned a disproportionate
amount of load by mistake. Thus, while total bytes sent decreases only slightly as a
result of better load balancing, total network time decreases significantly because more
capable hosts (with faster network connections) become responsible for a larger fraction
of requests.

5.2 Bloom Filters and Caching
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Having established the scalability of our
general approach, we now turn our at-
tention to the additional benefits available
from the use of Bloom filters to reduce net-
work utilization. In particular, we focus on
how large the Bloom filter should be and
for what minimum data set size it should
be invoked. Using Bloom filters for every
transfer results in substantial unnecessary
data transmissions. Any time a Bloom fil-
ter is used, the host using it must later re-
visit the same query to eliminate any false
positives. Thus, Bloom filters should only
be used when the time saved will outweigh
the time spent sending the clean-up mes-
sage. Figure 8 shows the total bytes trans-
mitted per query as a function of the Bloom filter threshold, assuming the default value of
6 bits per Bloom entry. We find that the optimal Bloom filter threshold for our trace was
approximately 300. Any set below this size should be sent in its entirety as the savings
from using Bloom filters do not outweigh the network (not to mention latency) overhead
of revisiting the host to eliminate false positives.
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Next, we consider the effects of varying the number of bits per entry in the Bloom
filter and of caching on total network traffic. Figure 9(a) plots the total number of bytes
transmitted as a function of the Bloom filter size. The two sets of curves represent the
case when we enable and disable caching. Within each set, we set a maximum rate of
allowable false positives in the set of documents returned to the user for a particular query,
at 0%, 1%, and 10%. When the client allows 1% or 10% false positives, false-positive
removal steps may sometimes be eliminated; increasing the Bloom filter size enhances
this effect. Figure 9(b) shows that allowing false positives has significantly more effect
on varying total network time than it does on bytes transferred as it eliminates a number
of required message transmissions.

The effects of caching shown in Figure 9(a) are similar to those derived analytically
in Figure 5(b). Caching decreases the total amount of data sent and increases the optimal
Bloom filter size: in this case, from 18 bits per entry to 24 bits per entry. For optimal
Bloom filter sizes of 18 and 24 bits per entry in the no-caching and caching cases respec-
tively, our caching technique introduces more than a 50% reduction in the total number
of bytes transmitted per query.

5.3 Putting It All Together

We now present the end-to-end average query times considering all of our optimizations
under a variety of assumed network conditions. We break down this end-to-end time into
the three principal components that contribute to end-to-end latency: CPU processing
time, network transmission time (bytes transferred divided by the speed of the slower
network connection speed of the two communicating peers), and latency (determined
by the distance between communicating peers). Recall from Section 4 that we do not
measure the time associated with either the client request or the final response as the size
of these messages is independent of our optimization techniques.

Figure 10 shows three bar charts that break down total end-to-end search time under
the three network conditions described in Section 4: WAN, Heterogeneous, and Mo-
dem. For each network setting there are four individual bars, representing the effects of
virtual hosts on or off and of caching on or off. Each bar is further broken down into



network transmission time, CPU processing time, and network latency. In the case of an
all-modem network, end-to-end query time is dominated by network transmission time.
The use of virtual hosts has no effect on query times because the network set is homo-
geneous. Caching does reduce the network transmission portion by roughly 30%. All
queries still manage to complete in 1 second or less because, as shown in Figure 9(a)
the use of all our optimizations reduces the total bytes transferred per query to less than
1,000 bytes for our target workload; a 56K modem can transfer 6 KB/sec in the best case.
However, our results are limited by the fact that our simulator does not model network
contention. In general, we expect the per-query average to be worse than our reported
results if any individual node’s network connection becomes saturated. This limitation is
significantly mitigated under different network conditions as individual nodes are more
likely to have additional bandwidth available and the use of virtual hosts will spread the
load to avoid underprovisioned hosts.
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Fig. 10. Isolating the effects of caching, virtual
hosts, and different network characteristics for op-
timal Bloom threshold (300) and Bloom filter sizes
(18/24 for caching on or off).

In the homogeneous WAN case,
network time is negligible in all
cases given the very high transmission
speeds. The use of caching reduces la-
tency and CPU time by 48% and 30%,
respectively, by avoiding the need to
calculate and transmit Bloom filters in
the case of a cache hit. Enabling vir-
tual hosts reduces the CPU time by
concentrating requests on the subset of
WAN nodes with more CPU processing
power. Recall that although the network
is homogeneous in this case we still
have heterogeneity in CPU processing
power as described in Section 4.

Finally, the use of virtual hosts
and caching together has the most pro-
nounced effect on the heterogeneous
network, together reducing average per-
query response times by 59%. In par-
ticular, the use of virtual hosts reduces
the network transmission portion of av-
erage query response times by 48% by
concentrating keywords on the subset of nodes with more network bandwidth. Caching
uniformly reduces all aspects of the average query time, in particular reducing the la-
tency components by 47% in each case by eliminating the need for a significant portion
of network communication.

6 Related Work

Work related to ours can be divided into four categories: the first generation of peer-to-
peer systems; the second-generation, based on distributed hash tables; Web search en-



gines; and database semijoin reductions. We dealt with DHT-based systems in Section 1.
The others, we describe here.

The first generation of peer-to-peer systems consists of Napster [14], Gnutella [8],
and Freenet [5, 9]. Napster and Gnutella both use searches as their core location determi-
nation technique. Napster performs searches centrally on well-known servers that store
the metadata, location, and keywords for each document. Gnutella broadcasts search
queries to all nodes and allows each node to perform the search in an implementation-
specific manner. Yang and Garcia-Molina suggest techniques to reduce the number of
nodes contacted in a Gnutella search while preserving the implementation-specific search
semantics and a satisfactory number of responses [20]. Freenet provides no search mech-
anism and depends instead on well-known names and well-known directories of names.

Web search engines such as Google [3] operate in a centralized manner. A farm of
servers retrieves all reachable content on the Web and builds an inverted index. Another
farm of servers performs lookups in this inverted index. When the inverted index is all in
one location, multiple-keyword searches can be performed with entirely local-area com-
munication, and the optimizations presented here are not needed. Distributing the index
over a wide area provides greater availability than the centralized approach. Because our
system can take advantage of the explicit insert operations in peer-to-peer systems, we
also provide more up-to-date results than any crawler-based approach can.

The general problem of remotely intersecting two sets of document IDs is equivalent
to the database problem of performing a remote natural join. We are using two ideas
from the database literature. Sending only the data necessary for the intersection (i.e.,
join) comes from work on semijoin reductions [1]. Using a Bloom filter to summarize
the set of document IDs comes from work on Bloom joins [12, 13].

7 Conclusions

This paper presents the design and evaluation of a peer-to-peer search infrastructure. In
this context we make the following contributions. First, we show that our architecture
is scalable; global network state and message traffic grows sub-linearly with increas-
ing network size. Next, relative to a centralized search infrastructure, our approach can
maintain high performance and availability in the face of individual failures and perfor-
mance fluctuations through replication. Finally, through explicit document publishing,
our distributed keyword index delivers improved completeness and accuracy relative to
traditional spidering techniques.

One important consideration in our architecture is reducing the overhead of multi-
keyword conjunctive searches. We describe and evaluate a number of cooperating
techniques—Bloom filters, virtual hosts, caching, and incremental results—that, taken
together, reduce both consumed network resources and end-to-end perceived client
search latency by an order of magnitude for our target workload.
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