Lessons and challenges in automating data dependability

Kimberly Keeton, Dirk Beyer, Jeffrey Chase, Arif Merchant, Cipriano Santos, and John Wilkes
Hewlett-Packard Laboratories, Palo Alto, CA
Duke University, Durham, NC
{kimberly.keeton,dirk.beyer,arif.merchant,cipriano.santos,john.wilkes}@hp.com, chase@cs.duke.edu

Abstract: Designing and managing dependable systems is a difficult endeavor. In this paper, we describe challenges in this vast problem space, including provisioning and allocating shared resources, adaptively managing system dependability, expressing dependability goals, interactively exploring the design space, and designing end-to-end service dependability. We outline the optimization-based approach we’ve used to tackle a portion of this space, and describe how it can be extended to address an even larger dependability scope.

1 Introduction

Dependability encompasses the sometimes competing goals of reliability, availability and performance. As a result, managing system dependability is even more difficult than managing performance. Techniques for improving availability and reliability often consume additional resources for redundancy, further contributing to the dilemma of how to allocate resources. Specifying dependability goals is challenging, and determining if they have been met is even harder. Failures are uncommon and unpredictable, and it is difficult to determine whether a particular system configuration can meet a probabilistically specified availability bound (e.g., five nines) for a given incidence of failures. Designing systems to meet these goals is also difficult: the design space of techniques for protecting information is surprisingly large, with myriad configuration choices. It’s tough to understand how the techniques interact and how they impact recovery behavior after a failure.

Despite the vastness of this problem space, we have made progress towards the goal of automating the design of dependable data systems. At the 2002 SIGOPS European Workshop we explored ways to express dependability goals for automating storage system design [11]. Since then, we’ve come to realize that specifying dependability goals in financial terms (as penalties for downtime and data loss) allows us to evaluate cost vs. risk tradeoffs in a common currency. Our automated storage design tool uses this insight to formulate dependability design as an optimization problem [9]. We’ve also built an analytical framework for modeling the dependability of data protection techniques, which simplifies composition of these techniques and permits easy incorporation of new techniques [10].

In this paper, we step back and outline challenges and opportunities in the larger space of managing dependable systems (Section 2). Section 3 describes our formulation for a small portion of the problem space, and how that solution can be adapted to address an even broader scope. Our goal is to encourage discussion about this exciting and important area, and to prompt an exchange of ideas about possible solutions. Section 4 concludes.

2 Defining the dependability landscape

Our conversations with consultants and customers indicate that system designers and administrators have a wide range of needs when managing system dependability. Broadly speaking, they include coping with complex, dynamic systems; expressing goals and understanding choices; and holistically approaching dependability. In the following sections, we describe these needs in more detail.

2.1 Coping with complex, dynamic systems

Dealing with complex systems that may change over time requires the ability to provision, allocate and share resources, adaptively manage dependability, and extensively support data protection techniques, as shown in Figure 1.

Provisioning, allocating and sharing resources. Shared resource environments such as utility data centers [6, 7] and disaster recovery sites are becoming more popular. They require the ability to provision resources and allocate them amongst competing customers. Customers who manage their own computing and storage infrastructure must also balance allocations between competing workloads. For instance, some multi-national companies employ multiple primary sites on different continents, which serve as secondary sites for one another. Each site must then allocate its resources between the local primary workload and the remote secondary workload.
Both customers and service providers want to design storage systems that will protect against a wide range of failures, not just cope with single failure scenarios. In addition to “green-field” provisioning, they also want to find the best possible way to allocate their existing resources.

Extensible support for data protection techniques. Technology continues to offer us an ever-growing set of choices for protecting data. Traditionally, data dependability was maintained for the primary copy through RAID techniques to withstand disk failures, and secondary copies (backups) made on magnetic tapes. We now also have the ability to create local online copies of the data, remote replicas maintained through synchronous or asynchronous updates, and backups onto disk, optical disk and a variety of tape technologies. Moreover, these methods can be combined to meet requirements that a single technique cannot achieve. For instance, to meet regulatory requirements while avoiding degraded performance, system designers may employ synchronous mirroring to a local site in concert with asynchronous mirroring between the second (local) site and a third remote site. Alternately, data may be mirrored to a secondary site, where it is backed up to tape. In all cases, system designers must be able to understand the alternatives’ recovery behavior sufficiently to pick the most appropriate solution from amongst the different techniques, including choosing the appropriate configuration parameters (e.g., number of wide area links, asynchronous mirroring write absorption interval). They also want to take advantage of new technologies as they become available.

Adaptive dependability management. Dependable system design and initial deployment are the first steps in managing the system as it evolves in response to changing business and workload demands, component upgrades and failures. Once a storage system has been deployed, system administrators and users want assurance that the system design will respond to failures as expected (e.g., with reasonable recovery time and/or data loss). Should business or workload demands evolve, they want to be able to reallocate and/or re provision to accommodate these changes. Should a failure occur, they need to determine whether and how the workloads can continue running on the resources that remain. An important consideration is the cost of recovering workloads from the failed resources onto the available resources. Because the available resources may not be sufficient to support the original workloads, system administrators must be able to decide which workloads need to be stopped to “make room” for the most critical workloads. (These stopped workloads can later be restarted if additional resources can be provisioned.)

2.2 **Expressing goals and understanding choices**

 Provisioning, allocating and adaptively managing resources are critical for ensuring the dependable operation and evolution of the underlying system. Interestingly, interacting with customers to gather requirement information and to show them the financial implications of their choices may be nearly as important. Figure 2 illustrates this process.

Collecting meaningful goals. Data dependability design is predicated on the ability to collect meaningful customer goals. The better (e.g., more quantitatively) customers can specify their goals, the better the chance that the resulting system will meet those goals. Consultants currently use various techniques, including business continuity assessments [5], to determine a company’s readiness to handle a disaster and to collect qual-
itive information on current management and disaster recovery practices. Designing the right tools (e.g., questionnaires, graphical user interfaces) to query customers for quantitative goals remains an open problem.

Richer goal specifications. Penalty rates [9] provide a simple abstraction for representing customers’ business requirements for downtime (US dollars per hour downtime) and data loss (US dollars per hour of lost recent updates). However, these linear penalty rates may be insufficient to describe customers’ requirements. For instance, the first five minutes of downtime may be inexpensive, the next hour slightly more expensive, the next 8 hours very expensive, and so on – all the way to bankruptcy in the limit. Downtime at different times of the day (or week or month) may also be penalized differently. Additionally, failures resulting in recent data loss at different points in the secondary copy creation cycle may be valued differently. For example, a failure during the last minute before a central bank synchronizes with the Securities and Exchange Commission is more critical than a failure in the first minute after the synchronization has completed. What’s more, system administrators may want to build a margin of safety into their system designs to handle intangible requirements (e.g., “the first failure means no bonus; the second failure means no job”).

Exploring the design space. Customers may not understand the ramifications of the design choices they make. In some cases, they may not be able to quantify even simple dependability goals. A toolset that can easily navigate the design space to evaluate “what if” scenarios would be quite useful to increase customer understanding. Even if they can’t quantify their requirements, the ability to interactively explore the design space may show the boundaries between different operational regions, where different solutions prevail. Customers may find choosing between regions (e.g., ranges of input requirements) easier than picking a particular point in the requirements space.

2.3 Holistic approaches to dependability

Making data storage systems dependable is a critical first step towards the goal of provisioning overall system resources to meet customers’ more general quality of service goals. We consider separately the questions of end-to-end dependability design and multi-attribute provisioning.

End-to-end dependability design. Upon failures, the entire infrastructure must recover to permit the service to continue operation. As a result, ultimately users want to provision server, networking, middleware and application resources to meet their end-to-end service dependability goals. This more holistic approach means that the space of potential dependability techniques is expanded to include mechanisms at other levels of the application stack, including snapshots, checkpointing, logging, replication and failover at the file system, database and application levels, as well as interactions between these mechanisms. For example, Total Recall dynamically sets the number of file replicas according to a per-file availability target for given site failure rates in a peer-to-peer system [3]. The batch-aware file system dynamically determines whether to checkpoint application state to a temporary file as a tradeoff to avoid restarting computations if a task fails [2]. The Aved project examines how to automatically provision computational resources between tiers in a multi-tier environment to support availability and performance goals [8].

Multi-attribute provisioning. Although most research in automating design decisions has focused on performance alone [1] or on availability and reliability [8, 9], customers ultimately want to design systems that will meet all of their goals, including reliability, availability, performance and security. The notion of performability – performance at a given level of availability – partially allows customers to describe their needs. For example, the system should perform at “at least 200 MB/sec 25% of the time, at least 150 MB/sec 50% of the time, at least 100 MB/sec 95% of the time and 0 MB/s no more than 5% of the time.”

Given that the price tag for a system that meets all of the customer’s goals may be too high, customers also need a way to express tradeoffs between the attributes, and to take these tradeoffs into account when designing the system. For instance, a customer may want to achieve a base level of reliability before worrying about performance and availability, and then a base level of performability before balancing these concerns (e.g., “achieve reliability to level A, followed by performability to level B, followed by an even mix up to levels C and D, respectively.”) More generalized utility functions may provide a method for expressing such tradeoffs [12].

3 Automating data dependability

Although the problem space described in the previous section is very rich, we have made considerable progress in tackling a limited portion of that space. In [9], we described the architecture and evaluation of an automated tool for designing dependable storage systems. It combines quantitative models of the most common data protection and recovery techniques – remote mirroring, tape backup, site failure and site reconstruction – with an off-the-shelf optimizing solver to choose...
the best alternative.

Customers provide business goals expressed as financial penalty rates: US dollars per hour of outage time (unavailability) and US dollars per hour of data loss, specified as how much recent data (in time) is lost during the recovery process. By expressing business requirements as financial penalties, we were able to cast the overall design question as an optimization problem, using mathematical programming techniques (e.g., mixed-integer programming [14]). The optimization objective is to minimize the overall business costs, defined as outlays plus penalties for a failure of the primary copy of data (e.g., due to array failure or site disaster). Outlays include equipment costs for the primary array(s), data protection techniques, failover alternatives and spare resources. Penalties are associated with the outage time and data loss for recently-written data. The outputs of the design tool are the storage solution design, the estimated worst-case data loss and recovery times, and the outlay and penalty costs. In addition to selecting the data protection and recovery techniques with the least overall cost, the solution must include settings for parameter values, such as the number of tape drives or network links, the duration of backup windows, etc.

The resulting optimization tool can be used for a number of different purposes, including evaluating the dependability and cost of existing designs, determining the best solution for the specified business inputs, and exploring the design space across a wide range of business requirements.

Narrowing the scope of the problem allowed us to make considerable progress, at the cost of somewhat restricted functionality. The current solver performs a worst-case scenario analysis by considering the effects of a single failure at a time, resulting in designs that focus on that failure type, to the exclusion of others. For simplicity, we treat all workload data objects as having the same goals. For ease of prototyping, we implement the models of data protection technique behavior directly in the optimization framework. This monolithic structure makes it difficult to add new data protection techniques, or to combine existing ones. Finally, the optimization framework focuses on the question of how to provision resources for "green field" designs, without considering how to assign or augment an existing pool of resources.

Our experience leads us to believe the general approach of treating dependability design as an optimization problem holds promise for addressing an even larger portion of the dependability management space. In this section, we outline how our existing framework could be extended in a straightforward fashion to answer some of the challenges raised in Section 2.

3.1 Allocating shared resources

Addressing challenges in allocating and sharing already-provisioned resources requires several extensions to our automated design infrastructure:

Multiple workload objects. Provisioning and allocation in shared environments requires support for multiple workload objects, including the ability to specify independent requirements for different workload objects and the ability to describe dependencies between workload objects. (For example, the ability to access user data depends on the availability of operating system and file system data.) The models and optimization framework must now consider not only what resources are provisioned, but also how the workload objects are allocated to resources and how the objects depend on one another. The framework must also be able to evaluate penalty functions separately for each workload object.

Allocating existing resources. The optimization support for allocating an existing set of resources is straightforward: we merely fix the values for decision variables corresponding to those resources (e.g., number of tape drives, wide area mirroring links, or disk arrays). The same objective function used in the "green field" design case can then be evaluated to determine the allocation that minimizes the overall costs.

Expected system dependability. Computing expected dependability under a broad range of different failures requires support from both the models and the solver. First, the models must be able to estimate the recovery time and recent data loss under each failure type of interest. Examples include primary array/site failures, partial primary failures, data protection technique failures (e.g., mirroring link(s), tape drive(s) or tape media), and multiple simultaneous failures (e.g., a failure scope large enough to take out both primary and secondary copies).

The solver needs the ability to consider multiple potential scenarios and weight them appropriately. Fortunately, robust optimization techniques [13] can be applied. Briefly, a separate optimization model is constructed for each possible failure scenario, with localized decision variables that correspond to decisions that must be made only under that scenario. Decisions that must be made independent of the failure scenario are represented by decision variables common to all of the models. The overall optimization model incorporates all of the scenario-specific constraints, and computes the overall objective function by appropriately weighting the values of the individual objective functions. This approach has the added benefit that it’s easy to incorporate a new failure scenario into the solver.

Choosing the appropriate weighting factors is challenging: merely using failure occurrence frequencies
will discount the potentially devastating losses that occur for very infrequent, but large-scale failures. We believe that it may be more appropriate to use relative failure frequencies or perceived failure importance. The latter option permits users to express their risk aversion, and as a result, more fully consider the magnitude of losses accompanying disasters.

3.2 Extensible modeling support

We deal with the ever-increasing list of data protection techniques by providing a framework in which models of individual dependability techniques can be composed [10]. The framework uses a common set of parameters to describe the most popular data protection techniques, which enables the addition of models for new techniques as they are invented. Because the detailed models of each technique’s operation are maintained separately from the composition framework, it is also straightforward to incorporate more sophisticated models of existing techniques.

An open question in this space is how to describe reasonable combinations of data protection techniques. For instance, to create a consistent tape backup, one needs access to a point in time copy such as a snapshot or array-based split mirror. There may also be constraints on which order techniques may be applied: for example, it makes sense to mirror data from the local array to a remote array, and then create a tape backup at the remote site, but not the other way around. Such a “grammar” would describe valid inputs to the modeling framework. It could also inform the solver’s need to express feasible solutions.

3.3 Richer goal specifications

To support more complex business requirements, we must determine how to quantitatively specify them and how to extend the models and solver to incorporate the more detailed requirements. For instance, we could use piecewise linear penalty rates to capture penalties that increase as a function of the length of outage or recent data loss duration. This approach permits us to assign very large penalty rates to impose hard constraints on recovery time and data loss (e.g., corresponding to the recovery time and recovery point objectives (RTO and RPO) used by consultants today [4]). In this case, the solver would be extended to assess penalties as a function of outage or data loss duration. Capturing qualitative or intangible requirements remains an open problem.

3.4 Adaptive dependability management

Analogous to the performance provisioning case [1], we envision that our solver could be included in an adaptive management cycle to (re)design, (re)configure and analyze the dependable system throughout its lifecycle.

To support reprovisioning or augmenting system resources, we can extend the solver. To expand the existing resources to support increased demand, we can use the same objective function as for “green field” design, but dramatically lower the price of existing resources, to ensure they are used to their fullest capacity. Reallocating resources in response to failures or disasters is somewhat more complicated. In addition to evaluating the best allocation for the reduced set of resources, the solver must also capture the costs of recovering the workloads from the failed resources onto the available resources.

Once the storage system has been deployed, the management system should be able to verify that the design’s achieved behavior meets the behavior predicted by the modeling framework. It can measure recovery behavior after actual failures (e.g., accidental deletions by users, array component failures). It can also measure recovery behavior under disaster recovery drills to verify correct operation under more severe and infrequent failures. If sufficient performance and capacity exist in the system, one can also imagine the management system proactively injecting smaller-scope faults to test recovery behavior.

These measurements of actual recovery time and data loss can provide feedback to the modeling framework, to help adjust its estimates for future designs. The management system can additionally collect information on the frequencies of various types of failures, to inform its failure models. Finally, to fine-tune the solver’s workload models, the management system can also measure the update and read access performance of the workloads running on the system.

4 Conclusions

Although automating the design of dependable storage systems might have seemed an infeasible goal upon first consideration, we’ve demonstrated that it is an achievable one. In this paper, we’ve articulated several research opportunities for managing dependable systems. We’ve also described one potential approach (e.g., optimization based on financial objectives) for addressing these challenges. By outlining this vision, we hope to entice other researchers to join us in exploring this exciting space.
References

