
Dynamic Virtual Clusters in a Grid Site Manager

Jeffrey S. Chase, David E. Irwin, Laura E. Grit, Justin D. Moore, and Sara E. Sprenkle
�

Department of Computer Science
Duke University

Box 90129, Durham, NC 27708, U.S.A.
{chase,irwin,grit,justin,sprenkle}@cs.duke.edu

Abstract

This paper presents new mechanisms for dynamic re-
source management in a cluster manager called Cluster-
on-Demand (COD). COD allocates servers from a com-
mon pool to multiple virtual clusters (vclusters), with inde-
pendently configured software environments, name spaces,
user access controls, and network storage volumes. We
present experiments using the popular Sun GridEngine
batch scheduler to demonstrate that dynamic virtual clus-
ters are an enabling abstraction for advanced resource
management in computing utilities and grids. In particular,
they support dynamic, policy-based cluster sharing between
local users and hosted grid services, resource reservation
and adaptive provisioning, scavenging of idle resources,
and dynamic instantiation of grid services. These goals are
achieved in a direct and general way through a new set of
fundamental cluster management functions, with minimal
impact on the grid middleware itself.

1 Introduction

The integration of clusters into computational grids is
one of several trends driving a shift to mixed-use clusters
that serve multiple user groups with different needs. Grids
enable networked sharing of cluster resources across ad-
ministrative domains, bringing external users into the clus-
ter. Grid-connected clusters host diverse grid services and
software environments, including applications that aggre-
gate resources from multiple sites for a single computa-
tional task. Shared mixed-use sites also result from consoli-
dation of clusters to gain on-demand access and economies
of scale in deployment and administration.
�
This work is supported in part by the U.S. National Science Foun-

dation (EIA-9972879, EIA-9870728), by HP Labs, and by IBM through a
SUR equipment grant and an IBM faculty research award. Sprenkle is sup-
ported by an NSF Graduate Fellowship, and Grit is supported by a National
Physical Sciences Consortium Fellowship.

Mixed-use sharing creates new challenges for cluster
management, particularly for grid-connected clusters. The
outlines of the next-generation grid are now visible [9,
10, 12, 13, 25]: it will include policy-based resource man-
agement, distributed authorization, dynamic instantiation
of software environments and services, resource reserva-
tions for predictable application service quality, and dy-
namic adaptation to changing load and system conditions.
As grid computing extends to include long-lived network
services [13], it is increasingly important to provision re-
sources for performance targets embodied in Service Level
Agreements or SLAs [10].

This paper presents a new cluster management archi-
tecture for grid-ready mixed-use clusters, and experimen-
tal results from a prototype implementation called Cluster-
on-Demand (COD). COD incorporates the best practices of
the current generation of cluster managers: database-driven
network installs from predefined software distributions [3,
19, 23, 31], software customization and automated remote
upgrades [23], and load-balancing task schedulers [5, 24,
27]. Most clusters today follow the Beowulf model of ho-
mogeneous clusters with a single system image. While
COD is complementary to this model and builds on its
success, it is a fundamental departure from it. In partic-
ular, COD manages a cluster as a multi-purpose modu-
lar resource that hosts different user groups and software
environments in isolated partitions called virtual clusters
or vclusters. It exports an external interface to instantiate
vclusters and resize them according to dynamic conditions
and site policies.

The central point of this paper is that dynamic virtual
clusters are a fundamental enabling abstraction for the next-
generation grid. In a grid setting, COD acts as a site man-
ager that controls local resources and exports a resource
negotiation interface to local grid service middleware and
external resource brokers on the grid. Vclusters are the ba-
sis for dynamic policy-based allocation of cluster resources
across different application environments and user commu-
nities within each grid site. Vclusters can encapsulate grid

services such as batch pool schedulers or clustered Web ser-
vices containers (e.g., IBM WebSphere); in this way, sites
can control the resources associated with each grid service,
without placing ever more complex resource management
and access control functions into grid service middleware
and applications.

To illustrate the role of dynamic virtual clusters in grid
site management, we present experimental results from
multiple instances of the Sun GridEngine (SGE) batch pool
scheduler running in separate vclusters under COD. We im-
plemented a simple wrapper for SGE to monitor load and
negotiate for resources from the COD manager, which allo-
cates resources to the batch pools according to configured
policies. The experiments show that the architecture en-
ables dynamic provisioning and differentiated service poli-
cies unified at the COD level, without requiring the batch
pool scheduler (or, by extension, other grid service middle-
ware) to support these functions. The experiments use a
simple priority allocation policy with guaranteed minimum
reservations; the purpose of the experiments is to illustrate
the power and practicality of vclusters as a mechanism for
dynamic resource management, and not to evaluate the poli-
cies, which are replaceable.

This paper is structured as follows. Section 2 discusses
the role of dynamic virtual clusters in grid site management.
Section 3 outlines relevant aspects of the design and imple-
mentation of the COD cluster manager. Section 4 discusses
extensions to grid service middleware to support dynamic
provisioning under COD, using the SGE batch pool wrapper
as an illustrative example. Section 5 presents experimental
results with dynamic resizing of multiple SGE batch pools
under trace-driven load. Section 6 sets COD in context with
related systems, and Section 7 concludes.

2 Overview

We initiated the Cluster-on-Demand project with the
goal of building an “operating system” for a large, shared,
mixed-use cluster. COD enables rapid, automated, on-the-
fly partitioning of a physical cluster into multiple indepen-
dent virtual clusters (vclusters). A vcluster comprises a
subset of cluster nodes configured for a common purpose,
with associated user accounts and storage resources, a user-
specified software environment, and a private IP address
block and DNS naming domain. Once a configuration is
defined, applying it to a node is automatic: this makes it
easy to redeploy cluster nodes among user communities and
software environments under programmatic control.

The basic elements of COD are similar to other sys-
tems that manage clusters using database-driven network
installs, most notably Oceano [3] and Emulab [31] (see Sec-
tion 6). Our design for COD leverages widely used open-
source components to support diverse hardware platforms

and software configurations, and to evolve rapidly with new
technology. It is deployable on any modern off-the-shelf
cluster (i.e., the nodes support PXE remote boot and can
run Linux) with an Ethernet/IP network, remote manage-
ment using DHCP and NIS, and shared network storage,
e.g., through NFS. COD can be deployed incrementally in
a bottom-up fashion: its use at a site is transparent to any
other software at the site, unless that software uses the COD
service interfaces to allocate and configure resources.

As a cluster manager, the COD architecture addresses
three key goals:

� Secure isolation of multiple user communities. In-
dependent sets of user identities may be active within
each vcluster, removing the need for a common space
of user accounts and IDs across the system. For exam-
ple, it is possible to open a segment of a large cluster to
external users on a temporary basis, without (in princi-
ple) compromising the primary user community.

� Custom software environments. Each vcluster may
run software tailored to the needs of its users, all the
way down to the operating system. With Gigabit Eth-
ernet and a typical SCSI disk, it takes about two min-
utes to install Linux from a bit image hosted on a net-
work server. Users may select software from a library
of configuration templates. Authorized users may up-
load new template images to instantiate new software
environments on “raw” resources exported by the site.

� Dynamic policy-based resource provisioning.
Vclusters are the subjects of resource allocation for
clusters in the same way that resource containers [4]
and related resource control mechanisms serve that
role on individual servers. Site administrators may
specify policies to control the resources assigned
to each vcluster. Vclusters are a powerful basis for
adaptive resource management when combined with
continuous load monitoring within each vcluster.

These functions are also useful as a basis for advanced
resource management for grid-connected clusters. One ben-
efit of the approach is that it enables safe and flexible af-
filiation with grids by encapsulating each grid service in a
separate isolated vcluster whose size is controlled by site
policies. It becomes easier and safer to donate resources to
a grid, because grid services and their external users cannot
interfere with portions of the cluster that are assigned for
other purposes. Also, since multiple software environments
may coexist in different vclusters, it is possible to multi-
plex grid points-of-presence (e.g., Globus, Avaki) on a sin-
gle physical cluster. This approach is useful because there
is no “one-size-fits-all” grid: rather, this space has several
competing, evolving software packages and multiple logi-

cal grids established by peering arrangements among insti-
tutions.

More generally, the COD site manager may itself ex-
port a grid service interface for resource negotiation and
other advanced resource management functions. COD is
designed to allow sites to delegate control over shares of
their local resources to external policy managers and re-
source brokers in the grid, as described in Section 3. Ex-
ternal managers may obtain rights to cluster resource shares
for specific time intervals, and bind them to vclusters under
their control. Thus dynamic vclusters can serve as the un-
derlying mechanism to support a wide range of policies for
sharing and managing resources. As a grid site manager,
the COD architecture can provide three key functions:

� Balancing local vs. global resource use. Sites can
dynamically control how much of their resource is ex-
posed to the grid, and may hold some resource in re-
serve for local use. For example, a site can give priority
to local uses and allocate idle machines for best-effort
grid service. This structure is an alternative to resource
scavenging systems such as Condor [20], which are in-
stalled on every node, making them more difficult to
use safely in heterogeneous software environments.

� Controlled provisioning for grid services. The site
manager can provision resources dynamically across
multiple hosted grid services. Provisioning will be-
come increasingly important as grids host Web ser-
vices whose request loads vary with time. The site
management policies can reflect priority or peering ar-
rangements, as well as feedback about load and/or re-
source demands to meet service quality targets (SLAs).

� Reservations. Distributed grid applications are sensi-
tive to their mappings onto grid resources, creating a
need to reserve collections of grid resources at multi-
ple sites to deliver predictable performance [12]. The
COD interface allows external managers to obtain a
lease on physical resources bound to a vcluster for spe-
cific time intervals.

Although COD can serve as a key component of a grid
architecture, it diverges from the accepted model of grid
computing middleware in one critical respect. One role of
middleware is to mask differences in the underlying operat-
ing systems by exposing only a middleware API to applica-
tions. In contrast, COD views operating systems and other
elements of the software environment as components to be
manipulated and configured at will. Because COD manages
cluster resources at the granularity of nodes, it is possible to
customize the vcluster environment by replacing the soft-
ware on recruited nodes down to the “bare metal”.

Several technology trends lead us to this fundamental
shift: decreasing cost of cluster nodes, increasing scale

of clusters, industry manageability initiatives enabling full
control of cluster nodes from the network, and I/O speeds
increasing at a faster rate than software size. These trends
undermine the longstanding assumption that software en-
vironments and applications are bound to specific computer
systems that are manually configured to run them on a semi-
permanent basis. The node configuration cost—which is on
the order of seconds, or minutes for a full “wipe it clean”
install [23]—is amortized across long runs of resource-
intensive applications, which are typical in a grid setting.
Also, vclusters may run Web service containers (e.g., IBM
WebSphere), batch pools, or other grid services that sched-
ule multiple tasks on the vcluster’s resources over a long
period of time (see Section 4).

Customizing node software can advance the potential of
grid computing beyond the subset of applications that have
been “grid-enabled” by recoding them to use grid middle-
ware APIs. This capability can extend the grid toward true
reconfigurable on-demand network computing, in which a
pool of network servers act as generic caches for software
environments and applications, and are automatically con-
figured to instantiate them wherever resources are available
and demand exists.

3 Dynamic Virtual Clusters in COD

Figure 1 illustrates the COD framework. A site admin-
istrator issues credentials authorizing access to an external
service interface for the COD site. Using this interface, ex-
ternal agents may define user groups, delegate access rights
to the members of a group, create vclusters on behalf of a
group, and define hardware requirements and software con-
figuration templates for those vclusters. This section gives
a brief overview of the essentials of COD; a more detailed
discussion can be found in a recent technical report [22]
(issg.cs.duke.edu/cod).

3.1 Node Management

COD leverages the Dynamic Host Configuration Proto-
col (DHCP) to take control of cluster nodes through Intel’s
Preboot eXecution Environment (PXE). At the node con-
figuration level, COD interposes on network management
services—NIS and DNS—to control each node’s view of
its environment according to its vcluster membership. The
DHCP, DNS, and NIS servers tie into a unifying back-end
database of node states and configurations. Since all servers
are stateless, the COD service is as reliable as its database.
Our prototype uses MySQL.

When a node boots, the DHCP server queries its status
from the database. If the node is switching to a new config-
uration, the DHCP server loads a minimal trampoline OS to
install the user-specified software. The trampoline includes

�����	��
������������
����
������������� ��!�!	"

#�$&%�')(+*-,�.�*�. /&'10�243

562�0)7�8�3�9;:�8�8&0
< /�0�8�=6,)0�(+*>*-8@?�A�(B�/�3C,�0�(84?
D�2�'18�/�3-*�2E?12�B&8�0�(,&0�(84?

F�,&01,4:�,�'124GIHJ3�(K12�?
?12�0)7�8@3�9L(+?�'10�,�. .
*�8@?10�3C8�. . 2�HM:�%
NIO�P�QSR�T�U VXW)Y

ZJ[F\'1243�K]243�'^:�,@*�9�2�HM:�%_*�8@?�A�(B�/�3`,�0�(8@?aH@,&0-,@:&,�'12

5SbcFed Z # *-84?�A-H b@=6,�B&2�/�f@. 8&,&Hg;%�F	5^c

D42�'18�/�3�*-2
=6,4?1,�B&243 g;%�c�h_i j 2�:E(X?10�2431A-,@*-2

kJ�Jl@m4no��!�!	"
��pq" r��l&�	�

sS�����t�vuwm
��ux��l�r��	"�m�" r��l&�	�&�

y Z g
j 2�:_'-2431K&(*�2
K Z . /�'10-243

y Z g

3C2�'18�/�3�*-2
f�8. (*�(2�'

K Z . /&'10�2433C2�z�/�24'10�'

{ 2�=>f@. ,&0�2H42�A�(X?&(0�(8@?)'

< Z #�b
j ,@9�2�GI8@?�G|i < 5

Figure 1. Cluster-on-Demand (COD) partitions a physical cluster into multiple virtual clusters (vclusters). Vcluster owners specify
the operating systems and software for their vclusters through an XML-RPC interface. The vclusters in this example run a batch
scheduler and a Web server cluster, which can resize dynamically to respond to load changes.

a minimal generic x86 Linux kernel and small RAM-based
root filesystem. This trampoline probes the node hardware
and sends a summary of the installed hardware to a config-
uration daemon, or confd. The confd then directs the tram-
poline to partition the local drives and to fetch and install
software images. As the node boots, the COD servers shape
its view of its environment:

� COD assigns node IP addresses within a subnet for
each vcluster. Nodes obtain their IP and router ad-
dresses from the DHCP server.

� Each vcluster occupies a private DNS subdomain de-
rived from the vcluster’s symbolic name assigned at
creation time. Nodes obtain their hostnames through
DHCP and use DNS or NIS to map between host-
names and IP addresses. Our prototype uses MyDNS,
an open-source SQL-enabled DNS server.

� Each vcluster executes within a predefined NIS do-
main, which enables access for user identities and net-
groups enabled for the vcluster.

� COD exports NFS file storage volumes as groups and
vclusters are defined. Nodes obtain an NFS mount map
through NIS; only those NFS file volumes authorized
for access by the vcluster’s group are exported to it.

3.2 Virtual Cluster Managers (VCMs)

COD enables fluid assignment of nodes to vclusters ac-
cording to load and site policies. While some vclusters may
maintain a static size, others may benefit from dynamic re-
sizing. For example, a vcluster hosting a pool of network
servers or a grid batch scheduler will face varying demand
over time.

COD resizes each dynamic vcluster in cooperation with
the service hosted within it. A key premise of the COD
architecture is that the system can negotiate resource provi-
sioning by interfacing with an application-specific service
manager—a Virtual Cluster Manager or VCM—for each
vcluster that hosts a dynamic service. The VCMs contain
the logic for monitoring load and changing membership in
the active server set for the specific application environ-
ment. Note that the service may itself host applications
(such as Web services or compute jobs) that are unaware
that this resizing is taking place. This hierarchical division
of resource management functions is a cornerstone of the
COD architecture for dynamic provisioning.

Our hypothesis is that the VCM functions are simple
extensions for well-structured grid services, and rarely re-
quire modifying the grid service middleware itself. In many
cases, it is possible to leverage support that must be present
in any robust cluster service to handle membership changes
resulting from node failures and incremental growth. Ex-
amples of application services amenable to this approach in-

clude load-leveling batch schedulers, enterprise application
monitors [29], cluster-based network services (e.g., [6, 16,
18, 26]), and cluster-based network storage [1, 28]. While
removing nodes from a service involuntarily may have a sig-
nificant performance cost, e.g., if the service hosts parallel
applications tuned for a specific degree of parallelism, many
cluster services can handle even this case gracefully [11].

Our prototype includes a generic VCM server that han-
dles the details of resource negotiation with the COD man-
ager, as described below. The service-specific aspects of
the VCM comprise three pluggable modules: add nodes,
remove nodes, and resize. These are arbitrary programs or
scripts executed from the VCM process with simple com-
mand line arguments. The add nodes and remove nodes
modules handle the mechanics of changing vcluster mem-
bership. The resize module contains the VCM policy to
monitor load and resource status and request changes to the
vcluster size. This simple modular structure makes it easy
to implement VCMs for specific services.

Section 4 illustrates these ideas by describing VCM
modules for the Sun GridEngine (SGE) batch pool service.
These modules use sequences of standard SGE configura-
tion commands to interact with the batch scheduler. We did
not modify SGE itself to install a VCM wrapper.

3.3 Resource Negotiation

A key goal of COD is to support flexible, extensible poli-
cies for resource management. COD is designed to allow
secure external control of site resources through a resource
negotiation protocol that separates the policies for cluster
resource management from mechanisms for dynamic vir-
tual clusters in COD itself. The XML-RPC negotiation
protocol (called Secure Highly Available Resource Peering
or SHARP) is based on soft-state reservations representing
claims on resource shares for specific time intervals, fol-
lowing the classical leases model [17, 30]. SHARP resource
claims are cryptographically signed to make them unforge-
able, and may be securely delegated to third parties.

The details of the framework are beyond the scope of
this paper. SHARP resource negotiation may be viewed as
closely similar to the recent SNAP proposal for Globus [10],
extended with support for secure delegation of resource
rights; this makes it possible to manage grid resources
through a network of interacting brokers managing various
shares of the resource pool. For the experiments in this pa-
per, the policy engine is integrated with the COD site man-
ager, and resource rights are redeemed immediately without
generating or validating a signed claim.

The COD manager accepts resource requests to create
virtual clusters and allocate nodes to virtual clusters. Each
request originates from a VCM, which is an XML-RPC net-
work server certified to act on behalf of a vcluster and its

group. At a high level, an allocation request is a 4-tuple
of the form (vcluster, template, count, attributes): allocate
count nodes to vcluster, selecting from nodes matching the
specified attributes, and apply the specified configuration
template. COD handles all requests asynchronously, and
uses callbacks to notify the requesting VCM of the outcome
of each request. If the request was at least partially satisfied,
the COD manager issues a Grant callback containing a
lease. The lease is an XML object asserting that the holder
controls a named set of nodes over some specific time in-
terval (its term). The COD manager configures any new
nodes for the specified template before returning the lease.
The VCM inspects each lease to identify any changes to its
node set, and invokes the service-specific VCM modules to
inform the service.

Each VCM periodically invokes its resize module to
evaluate its load. The resize module examines its internal
vcluster status measures, executes its policy, and outputs
one or more XML commands to the VCM server. The VCM
may voluntarily relinquish nodes under light load, or re-
quest additional nodes as its load increases. COD may force
the VCM to relinquish within a bounded time by refusing
to extend a lease if the resources are needed elsewhere. If
the VCM does not relinquish a reclaimed node, the COD
manager may seize it by forcing it onto the trampoline and
rebooting it into a different vcluster.

4 An SGE Batch Pool Manager

To demonstrate and evaluate the COD model for dy-
namic virtual clusters, we implemented a VCM wrapper
for Sun’s GridEngine (SGE). SGE is widely used to run
compute-intensive batch jobs on large clusters, and is simi-
lar to other local task schedulers for grid sites.

In a typical SGE cluster, a single master host runs a
scheduler (sge schedd) that dispatches submitted batch jobs
across an active set of execution hosts. Users submit jobs
by executing the SGE qsub command on any host in an
SGE vcluster. To maintain a uniform environment across
the active set, as required by SGE, each vcluster configura-
tion template defines a set of user identities eligible to use
the batch pool, and a shared network file volume mounted
through NFS. The NFS volume includes the SGE distribu-
tion and master status files (the SGE ROOT directory) and
all program and data files for the user jobs.

The core of the SGE VCM is the add node, re-
move node, and resize modules as described in the previous
section. Each module has a defined interface and outputs
XML commands to the VCM server. These modules en-
capsulate administrative complexities for assigning nodes
to the service. The modules are stateless and replaceable
even in a running system, e.g., to modify VCM policies.

The VCM modules for GridEngine are simply scripts

that execute sequences of SGE administrative commands.
The add node and remove node modules remotely start up
and shut down the proper SGE daemons. To add a host,
add node executes the SGE qconf command with a stan-
dard template to activate the node by its domain name and
establish a job queue for the node. After enabling the
queue, the VCM executes the SGE daemon processes—
sge commd and sge execd—on the node. To remove a node,
remove node executes SGE commands—qconf and qmod—
to disable the node’s job queue, reschedule any jobs on the
queue, destroy the queue, and deactivate the node.

The “brain” of the VCM is the resize module, which en-
capsulates the policy for resizing the vcluster according to
load. Our prototype uses a simple policy: request a new
node for every } pending jobs and relinquish a node af-
ter it has been idle for ~ seconds, where } and ~ are
user-defined parameters. We configured SGE to schedule
at most one job on each active execution host. The poli-
cies are stable and effective when each batch pool serves
compute-bound sequential jobs that run for longer than the
reconfiguration times.

The VCM server invokes the resize function every �1�����)�
seconds to check the status of the batch pool. The resize
module uses the SGE qstat command to obtain a list of
queues and the jobs scheduled to them. If there are queued
jobs that have not yet started, resize requests a new exe-
cution node for every } queued jobs. It then records any
nodes that are idle and timestamps them, and caches recent
history in a file. If there are no queued jobs, it issues a
relinquish request to return each idle node to the COD man-
ager after it has been idle for ~ seconds, stopping when it
reaches a minimum idle reserve of � nodes.

Using the SGE VCM, we can instantiate SGE batch
pools within vclusters, and dynamically resize each vclus-
ter according to batch load. The system can isolate users
of different batch pools, and apply arbitrary policies to allo-
cate resources to the pools under constraint. Our prototype
assigns a priority and a minimum guaranteed reservation to
each batch pool. A low-priority batch vcluster is similar to
the Condor resource-scavenging model [20]; that is, COD
allocates nodes to the batch pool only when they are idle.
The COD approach ensures a consistent environment across
the batch pool, at the price of a higher node allocation cost
to reinstall. The COD model also protects users with fixed
leases against interference from the batch pool.

Many competing batch schedulers support multiple
batch queues, and some schedule jobs according to prior-
ity. The COD approach provides these and other resource
management features (e.g., reservations) at the system level,
without relying on support within the batch scheduler mid-
dleware. The vcluster approach also allows more flexible
policies for allocating resources between the batch pool and
other competing vclusters. These features extend easily to

other middleware services as well.
We are currently considering how to extend the SGE

VCM to run with the Avaki Grid manager, which coor-
dinates batch job scheduling across multiple batch pools
(including SGE pools). These pools may reside at multi-
ple sites across a wide-area network, with local autonomy
over resource management. In the Grid, local site man-
agers pass information about their available resources to a
global grid manager, which makes informed global schedul-
ing decisions about where to route jobs [15]. In the COD
framework, the local VCM must notify the grid manager of
changes in vcluster size and may also pass global requests
for additional resources through to the local COD manager.
Our intent is that this approach will allow for multiple Grid
points-of-presence (e.g., Globus, Avaki) to run as separate
vclusters within a shared COD physical cluster, trading re-
sources across the grids according to site-specific policies.

We are exploring more sophisticated resource manage-
ment policies to handle more complex cases within this
framework. What is important is that this example illus-
trates the feasibility of dynamic cluster resizing and the
power and generality of the COD framework. In this case,
implementing a VCM was straightforward and required no
modifications to SGE itself to support a rich set of resource
management capabilities.

5 Experimental Results

This section presents experiments with SGE batch pools
in a prototype COD cluster under trace-driven batch load.
The results demonstrate dynamic provisioning behavior
with simple policies. We ran our experiments with mul-
tiple similarly configured SGE batch pools on a testbed of
80 rackmount IBM xSeries-335 uniprocessor servers within
the “Devil” Cluster at Duke Computer Science.

5.1 Traces

To stress the prototype under high levels of contention
and resource constraint, we construct test trace segments
drawn from a nineteen-month trace of production batch
queue activity on the Devil Cluster. The full trace starts in
September 2001 and continues until mid-April 2003. Each
trace entry contains a submit timestamp, job start time, job
completion time, and the user identity and executable file
name for the job. We divide the SGE users into three user
groups, select a three-month window of activity for each
group, and combine the trace segments to form the test
trace. The three user groups are:

� Systems. Researchers in networking and peer-to-peer
systems submitted large numbers of short jobs, usu-
ally no more than a few minutes long. Activity from

Day1 Day2 Day3 Day4 Day5 Day6 Day7 Day8
0

10

20

30

40

50

60

70

80

Time

N
um

be
r

of
 N

od
es

Systems
Architecture
BioGeometry

Figure 2. Number of nodes in each of three virtual clusters over time during the live deployment.

Day1 Day2 Day3 Day4 Day5 Day6 Day7 Day8
0

500

1000

1500

2000

2500

Time

N
um

be
r

of
 J

ob
s

Systems
Architecture
BioGeometry

Figure 3. Number of SGE jobs in each batch queue over time during the live deployment.

this group was highly bursty. The Systems trace seg-
ment runs from 17:01:52, 2002/02/01 until 00:00:00,
2002/05/01.

� Architecture. This team submitted a large number
of computer architecture simulations, each consum-
ing many hours of CPU time. Job arrival rate for this
group was relatively stable. The Architecture trace
section runs from 23:43:50, 2001/09/14 until 00:00:00,
2001/12/01.

� BioGeometry. These jobs evaluate new algorithms to
predict protein folding and docking. Submitted jobs
ran for days or weeks. This group submitted jobs
with steadily increasing frequency. The BioGeome-
try trace segment runs from 18:34:47, 2002/10/03 until
00:00:00, 2003/01/01.

5.2 Live Trace Experiment

In the first test we ran the system on a testbed of seventy-
one servers for twelve hours to examine the behavior of the
provisioning policies. The test instantiates three SGE batch
queues in separate vclusters, then replays a trace segment
to each batch queue in real time. All trace records execute
an application shell that spins in a busy loop for a specified
time. To accelerate the experiment, we sped up the submis-
sion and completion of jobs by a factor of 160. This speedup
allows a full three-month trace to complete in under twelve
hours. While speeding up the trace introduces significant
error in the flip times of nodes, the general trends of node
allocations are not affected.

Each SGE-VCM performs a resize every seven seconds
to negotiate for resources with the COD resource manager

according to the policies outlined in Section 4. The resize
policy requests one node for every 15 jobs still in the queue
and relinquishes a node after being idle for 60 seconds. The
COD resource manager uses a fixed priority ordering for the
batch pools, but guarantees each pool a minimum of two
nodes. In our experiment, the Architecture group has the
highest priority, the BioGeometry group has middle priority,
and the Systems group has lowest priority.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8
0

50

100

150

200

250

N
um

be
r o

f N
od

es

N
um

be
r o

f J
ob

s

Time (Days)

Architecture_nodes
Architecture_jobs

Figure 4. Combined size of the Architecture
running and pending job queues, and vclus-
ter size over an eight-day period.

Figure 2 and Figure 3 show the number of active nodes
and queued jobs, respectively, for all three groups over a
selected eight-day period. The graphs show time in days,
where each day represents approximately nine minutes in
real time. We examine the stages of resource contention
and negotiation visible during this time period.

Initially the cluster is underutilized for approximately
two days. A brief second stage involves a large spike in
demand from the Systems group, as the number of queued
jobs increases over 2000. To accommodate this burst, the
COD manager pulls nodes from the idle pool and allocates
them to the Systems vcluster. While the Systems vcluster is
growing, the Architecture group submits over 100 jobs to its
SGE pool. Due to the load spike from Systems, there are no
free nodes available. Since the Architecture group has the
highest priority, the COD manager reclaims nodes from the
other vclusters, primarily the low-priority Systems vcluster,
and transfers them to Architecture.

Figure 4 focuses on the Architecture group activity from
the same experiment to clearly illustrate the relationship be-
tween the length of the job queue and the number of nodes
in the vcluster. As the queue length grows, the SGE-VCM
obtains more nodes from COD to deliver a faster turnaround
time on Architecture jobs. SGE distributes the jobs to the
new nodes, restoring equilibrium and causing the queues to
shrink. As nodes become idle, the SGE-VCM relinquishes
them back to the global resource pool. If the size of the

queue is below the request threshold, } — for example,
midway through day two to midway through day three —
the SGE-VCM leaves the vcluster at roughly constant size.

Starting on day six, the Systems vcluster receives a burst
of over 2000 jobs, and requests nodes from the COD idle
pool. It keeps these nodes until the higher-priority Archi-
tecture and BioGeometry receive new job bursts and start
competing for nodes. Since Architecture is higher prior-
ity than BioGeometry, it acquires more nodes and retires its
jobs faster, eventually relinquishing its nodes to BioGeom-
etry.

While this experiment uses simple policies, it illustrates
dynamic policy-based provisioning with differentiated ser-
vice for SGE batch pools within the COD framework, with-
out any special support for advanced resource management
in the batch scheduler itself.

5.3 Policies and Scalability

To experiment with different policies and scalability with
larger traces, we replaced the SGE batch pools with an em-
ulated SGE environment to short-circuit the actual job exe-
cution. We modified the COD manager to disable node con-
figuration, and replaced each SGE batch pool with a small
C application that reads the batch job trace as input, replays
the trace, and responds to requests from the VCM modules.
Using the emulator, we can run months-long traces on the
order of hours. Use of the emulator is transparent to all other
system components, including the COD resource manager,
MySQL database server, VCM server, and SGE VCM mod-
ules.

The emulator moves forward in time in constant steps, or
epochs. For each epoch, the emulator replays the trace over
that epoch by removing completed jobs and inserting sub-
mitted jobs on a per-vcluster basis. It maintains lists of the
jobs in each queue, jobs to be run in the future, and jobs cur-
rently running on nodes. A key component of the emulator
is a suite of tools to emulate the SGE administrative com-
mands used by the VCM modules (primarily qstat). Their
output is identical to the real VCM commands, allowing our
SGE-VCM component to plug into a live SGE pool or an
emulated trace without modifying the SGE-VCM. The tools
connect to the emulator core through a socket to read and
modify the batch pool status. After each SGE-VCM uses
qstat to read state from the emulator, the emulator updates
the node and job data structures and advances the clock one
epoch.

In this section, we use the emulator to explore two vari-
ations of the priority-based resource allocation policy. In
the first case, when there are outstanding requests from
a high-priority vcluster, COD systematically steals nodes
from lower-priority vclusters to meet the requests of higher-
priority vclusters, but does not reclaim nodes from a victim

below a minimum guaranteed level of two nodes (as in the
previous experiment). This policy has the potential to starve
low-priority vclusters if higher priority vclusters are under
heavy load.

In the second case, we supplement this policy with vari-
able guaranteed minimum reservations. Instead of the flat
minimum size, COD guarantees each vcluster a minimum
size based on its priority. In this experiment, 90% of the 80-
node resource set is divided among the vclusters: Systems,
Architecture, and BioGeometry are guaranteed 12, 20, and
32 nodes, respectively.

0

20

40

60

80

100

10 11 12 13 14

N
um

be
r o

f N
od

es

Time (Days)

Total
BioGeometry
Architecture

Systems

Figure 5. Vcluster size with a pure priority-
based resource allocation policy.

0

20

40

60

80

100

10 11 12 13 14

N
um

be
r o

f N
od

es

Time (Days)

Total
BioGeometry
Architecture

Systems

Figure 6. Vcluster size with priority allocation
and minimum reservations.

Figures 5 and 6 show the results of our experiments for
the two policies. We select a four-day segment of the three-
month trace experiment when resources were constrained
for an extended period of time. In this experiment Bio-
Geometry has the highest priority, Architecure has the next
highest priority, and Systems has the lowest priority. Dur-
ing the four-day segment, BioGeometry is under load and

holds most of the resources. By comparing the two graphs,
we see that by the middle of day ten, Systems requests re-
sources and is granted its guaranteed twelve nodes by the
minimum reservation policy but is denied resources with
the priority-only policy. The same is true for Architecture at
the middle of day eleven. The minimum reservations allow
Architecture and Systems to make forward progress even
when BioGeometry is heavily loaded. This experiment il-
lustrates that the mechanisms for dynamic virtual clusters
can enable alternative resource management policies.

We ran experiments with larger emulated clusters and
more demanding trace segments to test scalability of the
system up to 1000 nodes. We amplified the number of
jobs in our trace so the system used all 1000 nodes. We
also modified the submission of jobs in the trace to create
a large number of node transitions. The emulation ran a
thirty-three day trace with 1000 nodes in 42 minutes making
all database transitions that would have occurred over the
thirty-three days. There were 3.7 node transitions per sec-
ond resulting in approximately 37 accesses to the database
per second. The database transactions are not the bottleneck
of the system. The emulator is not able to put enough load
into the system to limit the performance of the database.
This offers initial evidence that key elements of the COD
system (e.g., the database) are scalable to large clusters.

6 Related Work

There has been a great deal of research and progress
in managing clusters since the early days of the NOW
project [2]. The most successful systems today maintain
a homogeneous software environment for a specific class
of applications. These systems — including Beowulf [5],
load-leveling batch schedulers [24, 27], Millennium [7],
Rocks [23], and other elements of the NPACI grid toolset —
target batch computations written for common OS or mid-
dleware APIs. COD adds user-specified control over the
software environments, and a unified architecture for dy-
namic site resource management.

Several companies are marketing products to automate
server management for enterprises and Internet hosting
providers. Prominent players in this space include Ter-
raSpring, Opsware (Loudcloud), IBM, and HP through its
Utility Data Center (UDC) product and related research.
While few details of these systems are published, they re-
flect the concept of policy-based management of resources
and configurations in large shared server clusters.

COD was inspired by Oceano [3], an IBM Labs project
to automate a Web server farm. Like Oceano, COD lever-
ages remote-boot technology to reconfigure cluster nodes
using database-driven network installs from a set of user-
specified configuration templates, under the direction of a
policy-based resource manager. Emulab [31] uses a similar

approach to configure groups of nodes for network emula-
tion experiments on a shared testbed. Both of these systems
target specific application environments: network emula-
tion for Emulab, and Web service hosting for Oceano. COD
applies the ideas in these systems to a general framework
for dynamic sharing of cluster resources across arbitrary
user-defined software environments and applications. In
particular, COD’s hierarchical approach incorporates local
resource managers within each vcluster or vcluster group,
with a site resource manager to coordinate resource us-
age across multiple dynamic vclusters. Our goal is to
extend these ideas to a general architecture for reconfig-
urable clustering and dynamic provisioning for a full range
of grid services and cluster applications, with “pluggable”
application-specific Virtual Cluster Managers (VCMs).

Resource discovery and negotiation are widely recog-
nized as important elements of Grid architectures. The Grid
community has responded with initiatives for site manage-
ment, resource discovery and mapping, policy definitions,
and job scheduling. Our site manager architecture for node
allocations and reservations complements the Grid Informa-
tion Services architecture [9] implemented in the Globus
metadata service (or MDS), which provides “hints” for re-
source discovery. For example, a VCM for a dynamic clus-
ter may notify the MDS as its available resource changes
due to resource trading. Our approach can also serve as
a foundation for the Globus GARA proposal for resource
reservations [12] or the SNAP proposal for SLA-based re-
source allocation [10]. Even so, COD enables a fundamen-
tal alternative to the SNAP approach. SNAP proposes to
meet end-to-end SLA targets by negotiating SLAs for an
application’s consituent components with the sites running
them, and then combining the SLAs in some way. Our goal
is to allow a resource manager (VCM) to directly obtain and
control the resources needed to meet SLA targets for end-
to-end service quality.

7 Conclusion

This paper presents a new cluster management archi-
tecture for shared mixed-use clusters. The key feature
of Cluster-on-Demand is support for configurable dynamic
virtual clusters, which associate variable shares of cluster
resources with application service environments, e.g., batch
schedulers and other grid services. The COD site man-
ager assigns nodes to vclusters according to demand and
site policies, based on dynamic negotiation with a pluggable
service manager for each dynamic vcluster.

Experimental results with the COD prototype and a ser-
vice manager for the SGE batch service demonstrate the po-
tential of dynamic virtual clusters and resource negotiation
as a basis for dynamic provisioning and other advanced re-
source management for future grid systems. Our results

give evidence that the key needs for grid resource man-
agement can be met directly by generic site management
features that are independent of any specific application or
middleware environment.

Flexible site management using the COD model will
take a key step toward dynamic, adaptive, automatic pro-
visioning of network services from pools of shared server
resources dispersed through the Internet and “outsourced”
or leased by third parties. COD nodes act as generic
“caches” for software environments and applications; COD
configures nodes automatically to instantiate them where
resources are available and demand exists. This can enable
the grid to evolve toward the utility computing model of a
shared pool of computing resources—servers, storage, and
network capacity—that is automatically provisioned and as-
signed (or sold) according to demand.

References

[1] D. C. Anderson, J. S. Chase, and A. M. Vahdat. Interposed
request routing for scalable network storage. ACM Trans-
actions on Computer Systems (TOCS) special issue: selected
papers from the Fourth Symposium on Operating System De-
sign and Implementation (OSDI), October 2000, December
2001.

[2] T. Anderson, D. Culler, D. Patterson, and the NOW Team.
A Case for NOW (Networks of Workstations). IEEE Micro,
15(1):54–64, February 1995.

[3] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalan-
tar, S. Krishnakumar, D. P. Pazel, J. Pershing, and B. Rochw-
erger. Oceano - SLA Based Management of a Computing
Utility. In Proceedingsof the 7th IFIP/IEEE International
Symposium on Integrated Network Management, 2001.

[4] G. Banga, P. Druschel, and J. C. Mogul. Resource Contain-
ers: A New Facility for Resource Management in Server Sys-
tems. In Third Symposium on Operating Systems Design and
Implementation, February 1999.

[5] Beowulf. Beowulf. http://www.beowulf.com.

[6] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and
R. P. Doyle. Managing energy and server resources in host-
ing centers. In Proceedings of the 18th ACM Symposium on
Operating System Principles (SOSP), pages 103–116, Octo-
ber 2001.

[7] B. N. Chun and D. E. Culler. User-centric performance
analysis of market-based cluster batch schedulers. In 2nd
IEEE International Symposium on Cluster Computing and
the Grid, May 2002.

[8] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman.
Grid information services for distributed resource sharing. In
Proceedings of the Tenth IEEE International Symposium on
High-Performance Distributed Computing (HPDC), August
2001.

[9] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman.
Grid information services for distributed resource sharing. In

Proceedings of the Tenth IEEE International Symposium on
High-Performance Distributed Computing (HPDC), August
2001.

[10] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and
S. Tuecke. Snap: A protocol for negotiating service level
agreements and coordinating resource management in dis-
tributed systems. In 8th Workshop on Job Scheduling Strate-
gies for Parallel Processing, July 2002.

[11] M. J. Feeley, B. N. Bershad, J. S. Chase, and H. M. Levy.
Dynamic node reconfiguration in a parallel-distributed envi-
ronment. In Proceedings of the 1991 ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming,
April 1991.

[12] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt,
and A. Roy. A distributed resource management architecture
that supports advance reservations and co-allocation. In Pro-
ceedings of the International Workshop on Quality of Service
(IWQoS), June 1999.

[13] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The phys-
iology of the Grid: An Open Grid Services Architecture for
distributed systems integration. In Open Grid Service Infras-
tructure Working Group, Global Grid Forum, June 2002.

[14] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Phys-
iology of the Grid: An Open Grid Services Architecture for
Distributed Systems Integration, January 2002.

[15] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the
Grid: Enabling Scalable Virtual Organizations. International
Journal on Supercomputer Applications, 15(3), 2001.

[16] A. Fox, S. Gribble, Y. Chawathe, and E. Brewer. Cluster-
Based Scalable Network Services. In Proceedings of the 16th
ACM Symposium on Operating Systems Principles, Saint-
Malo, France, October 1997.

[17] C. Gray and D. Cheriton. Leases: An Efficient Fault-Tolerant
Mechanism for Distributed File Cache Consistency. In Pro-
ceedings of the 12th ACM Symposium on Operating Systems
Principles, pages 202–210, 1989.

[18] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler.
Scalable, distributed data structures for Internet service con-
struction. In Proceedings of the Fourth Symposium on Op-
erating System Design and Implementation (OSDI), pages
319–332, October 2000.

[19] J. Hsieh, T. Leng, and Y.-C. Fang. OSCAR: A turnkey so-
lution for cluster computing. Dell Power Solutions, pages
138–140, January 2001.

[20] M. Litzkow, M. Livny, and M. Mutka. Condor - A Hunter
of Idle Workstations. In Proceedings of the 8th International
Conference on Distributed Computing Systems, pages 104–
111, 1988.

[21] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - a
hunter of idle workstations. In 8th International Conference
on Distributed Computing Systems, pages 104–111. IEEE
Computer Society, June 1988.

[22] J. Moore, D. Irwin, L. Grit, S. Sprenkle, and J. Chase. Man-
aging mixed-use clusters with Cluster-on-Demand. Techni-
cal report, Duke University, Department of Computer Sci-
ence, November 2002.

[23] P. M. Papadopoulous, M. J. Katz, and G. Bruno. NPACI
Rocks: Tools and techniques for easily deploying manage-
able Linux clusters. In IEEE Cluster 2001, October 2001.

[24] PBS. PBS. http://www.openpbs.org/.

[25] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and
S. Tuecke. A community authorization service for group
collaboration. In Proceedings of the IEEE 3rd International
Workshop on Policies for Distributed Systems and Networks,
June 2002.

[26] Y. Saito, B. Bershad, and H. Levy. Manageability, Availabil-
ity and Performance in Porcupine: A Highly Scalable Inter-
net Mail Service. In Proceedings of the 17th ACM Sympo-
sium on Operating Systems Principles, December 1999.

[27] Sun. Sun’s GridEngine. http://gridengine.sunsource.net/.

[28] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: A scal-
able distributed file system. In Proceedings of the Sixteenth
ACM Symposium on Operating System Principles (SOSP),
pages 224–237, October 1997.

[29] W. Vogels, D. Dumitriu, K. Birman, R. Gamache, M. Massa,
R. Short, and J. Vert. The design and architecture of the
Microsoft Cluster Service – a practical approach to high-
availability and scalability. In Fault-Tolerant Computing
Symposium (FTCS), June 1998.

[30] J. Waldo. The Jini architecture for network-centric comput-
ing. Communications of the ACM, 42(7):76–82, July 1999.

[31] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An In-
tegrated Experimental Environment for Distributed Systems
and Networks. In Proceedings of the 5th Symposium on
Operating Systems Design and Implementation (OSDI), De-
cember 2002.

