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Abstract

Online content distribution has increasingly gained pop-
ularity among the entertainment industry and the con-
sumers alike. A key challenge in online content distribution
is a cost-efficient solution to handle demand peaks. To ad-
dress this challenge, we propose Dandelion, a system for ro-
bust cooperative (peer-to-peer) content distribution. Dan-
delion explicitly addresses two crucial issues in coopera-
tive content distribution. First, it provides robust incentives
for clients who possess content to serve others. A client
that honestly serves other clients is rewarded with credit
that can be redeemed for future downloads at the content
server. Second, Dandelion discourages unauthorized con-
tent distribution. A client that uploads to another client is
rewarded for its service only after the server has verified
the other client’s legitimacy. Our preliminary evaluation of
a prototype system running on commodity hardware with
1 Mbps uplink and 1 Mbps downlink indicates that Dan-
delion can achieve aggregate client download throughput
three orders of magnitude higher than the one achieved by
an HTTP/FTP-like server.

1 Introduction
Content distribution via the Internet is becoming increas-
ingly popular among the industry and the consumers alike.
A survey showed that Apple’s iTunes music store sold more
music than Tower Records and Borders in the US in the
summer of 2005 [18]. A number of key content produc-
ers, (e.g. CBS, Disney, Universal), are now selling films
online [2, 3, 6].

A challenging issue for online content distribution is a
cost-effective solution to handle peak usage by promotions
or new releases. A 45-minute DVD-quality episode easily
exceeds one GB. Even if each user is provisioned with a
1 Mbps, it takes more than two hours to download 1 GB.
Overprovisioning for one additional user during peak usage
may require at least an additional 1Mbps bandwidth, which
often costs up to $100 per month [5, 13]. However, a TV

episode is commonly sold at less than two dollars. One
solution is to purchase service from a content distribution
network (CDN) such as Akamai. Yet, CDNs’ services are
costly too, and free CDNs such as Coral, CoDeen, and Cob-
Web [11, 20, 26, 31] lack a viable economic model to scale.

This work explores a cost-effective approach for han-
dling flashcrowds. We present the design and a preliminary
evaluation of Dandelion, a cooperative content distribution
system. Rather than using a third party service, a Dande-
lion server utilizes its clients’ bandwidth. During a flash
crowd event, a server redirects a request from a client to
the clients that have already downloaded the same content.
This approach is similar in spirit to previous work on coop-
erative content distribution [12, 16, 24, 27, 28], most notably
BitTorrent [8]. However, with the exception of BitTorrent,
the above approaches do not provide incentives for a client
to upload to other clients. BitTorrent employs rate-based
tit-for-tat incentives, but these are susceptible to manipula-
tion [15, 17, 25] and do not motivate clients to upload con-
tent after the completion of their download (i.e., seeding).

The primary contribution of our work is that we pro-
vide robust incentives for clients to upload to others. By
robust, we mean that the incentive mechanism does not rely
on clients being altruistic or honest. Its secondary contri-
bution is that Dandelion discourages unauthorized content
sharing. Our design gives no incentives to clients to up-
load to unauthorized clients, but provides explicit rewards
for them to upload to authorized clients, e.g., clients that
have purchased content at a server.

Dandelion’s incentive mechanism is based on a crypto-
graphic fair exchange mechanism, which uses only efficient
symmetric cryptography. A client uploads content to other
clients in exchange of virtual credit. The credit can be re-
deemed for future service by other clients, or for service by
the server itself, or other rewards. This incentive mecha-
nism discourages unauthorized content exchange, because
a client is rewarded for its service only after the server has
verified that the client has uploaded to an authorized client.

We have implemented a prototype of a Dandelion client
and server and conducted a preliminary evaluation on Plan-
etLab [7]. We compare the throughput of a Dandelion
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server with a server that runs a simple request-response pro-
tocol, such as HTTP. Our preliminary evaluation shows that
Dandelion can improve the throughput of a commodity PC
server with 1 Mbps uplink and 1 Mbps downlink bandwidth
by three orders of magnitude. However, as a trade-off for
providing robust incentives and discouraging unauthorized
content distribution, a Dandelion server is less efficient than
a BitTorrent tracker. As a result, a Dandelion system is less
scalable than BitTorrent, with respect to the number of ac-
tive clients supported by a single server/tracker.

The rest of this paper is organized as follows. Section 2
describes the design of Dandelion. Section 3 briefly dis-
cusses our implementation and its performance. Section 4
compares our work with related work. We conclude in Sec-
tion 5. In the Appendix we provide a detailed description of
our protocol and discuss its security.

2 Design
This section describes the design of Dandelion at a high-
level. In Appendix, we describe the protocol in more detail.

2.1 Overview
The premise of our design is that a low server may have
limited outgoing bandwidth but sufficient CPU power, and
memory to execute many short cryptographic operations
and maintain TCP connection state with its clients under
a flash crowd event.

A Dandelion server can be used to distribute both small
and large static files, depending on the specifics of its de-
ployment (see Section 2.3). It behaves similar to a web/ftp
server under normal work load, responding to clients’ re-
quests with content. When a Dandelion server is over-
loaded, it enters a peer-serving mode. Upon receiving a
request, the server redirects the client to clients that are able
to serve the request.

A Dandelion server maintains a virtual economy. It re-
wards cooperative clients that upload to others with virtual
credit to provide robust incentives. The credit is used as
“virtual money” to purchase future downloads from other
clients or from the server itself (at a high credit cost when
the server is overloaded), or used as other types of rewards.

Similar to BitTorrent, a Dandelion server splits a large
file into multiple chunks, and disseminates them indepen-
dently. This allows clients to participate in uploading
chunks as soon as they receive a small portion of the file,
increasing the efficiency of the distribution pipeline. Fur-
thermore, this incentivizes clients to upload chunks to oth-
ers, as they need credit to acquire the missing ones.

2.2 Robust incentives
A key challenge in designing a credit system is to prevent
client cheating, while keeping both a server and a client’s
processing and bandwidth costs low. A dishonest client

Figure 1: The peer-serving protocol. The numbers on the
arrows correspond to the listed protocol messages. The
messages are sent in the order they are numbered.

that does not upload to others or uploads garbage may at-
tempt to claim credit at the server, and to be robust, the
server must not award credit to such cheating behavior. To
address this challenge, Dandelion employs a cryptographic
fair exchange mechanism. A Dandelion server serves as the
trusted third party mediating the exchanges of content for
credit among its clients. When a client A uploads to a client
B, it sends encrypted content to client B. To decrypt, B must
request keys from the server. The requests for keys serve as
the “proof” that A has uploaded some content to B. Thus,
when the server receives a key request, it credits A for up-
loading to B, and charges B for the content.

A problem occurs if a malicious client A sends invalid
content to B. B can discover that the content is invalid only
after receiving the decryption key and being charged. To
address this problem, our design includes a non-repudiable
complaint mechanism. If A intentionally sents garbage to
B, A cannot deny it. In addition, B is prevented from falsely
claiming that A has sent it garbage. For clarity, we describe
the complaint mechanism after we describe the normal mes-
sage exchange in a Dandelion system.

Figure 1 shows how messages are exchanged in a Dan-
delion system. We assume that each client has a password-
protected account with the server and that it establishes a
secure channel (e.g. SSL), over which it obtains shared
session keys with the server. During a flash crowd event,
the Dandelion server keeps track of the clients that are cur-
rently downloading or seeding offered files. The message
exchange proceeds as follows:
Step 1: A client (B in Figure 1) sends a request for a file to
the server.
Step 2: When the server receives the request, it returns di-
gests of the file chunks for integrity checking [8], a ran-
dom list of other clients that can serve the file, and crypto-
graphic authorizations, namely tickets that enable B to re-
quest chunks from these clients.
Step 3: Upon receiving the server’s response, B connects to
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the listed clients to request the file. We use client A as an
example in Figure 1.
Step 4: If B’s tickets verify that the server has authorized B
to request chunks from A, B and A will run a chunk selection
protocol similar to that in BitTorrent [8]. A reports period-
ically to B what chunks it has. B determines which chunks
it wishes to download and from which peers according to a
chunk scheduling algorithm such as rarest first.
Step 5: B sends a request for the chunk to A.
Step 6: If B’s ticket verifies, A chooses a random key k,
and encrypts it with the session key KSA, it shares with the
server. Client A sends to B the chunk encrypted with k,
the encryption of the key k, and its cryptographic commit-
ment to the encrypted chunk. A generates the commitment
by computing a message authentication code (MAC), keyed
with the shared session key KSA, over the digest of the en-
crypted chunk and the encryption of k
Step 7: To retrieve k, B sends a decryption key request to
the server. The request contains the encryption of the key k,
a digest of the encrypted chunk, and A’s commitment.
Step 8: Upon receiving B’s request, the server checks
whether A’s commitment matches the one computed over
B’s digest of the encrypted chunk and the encryption of key
k, using KSA. If the commitment verifies and B has suffi-
cient credit, the server sends the key to B. At the same time,
it rewards A with credit and charges B.

If A’s commitment does not verify, the server cannot de-
termine whether the discrepancy is caused by a transmission
error, or client A or B is misbehaving. The server simply
warns B of the discrepancy, and does not return the encryp-
tion key k. It updates neither A’s or B’s credit. B can re-
request the chunk from A or try another client.

If B repeatedly receives invalid commitments from A, it
should disconnect from A and blacklist it. Similarly, if the
server repeatedly receives decryption requests from B with
invalid commitments from a specific A, the server knows
that B is misbehaving because B should have blacklisted A.
The server will blacklist B.

Next, we explain the complaint mechanism. After B re-
ceives the key k, it decrypts the chunk and validates its in-
tegrity. If the chunk is invalid, B can complain to the server,
and A cannot repudiate it. This is because B’s complaint
message contains A’s commitment, the digest of the en-
crypted chunk, and the encryption of key k, all received in
the message from A in Step 6. The server can easily validate
whether A has sent the commitment, as the commitment is
a MAC computed with the session key KSA shared between
the server and A. B cannot forge a valid commitment. If
the commitment fails, the server knows that B is misbehav-
ing, since it should have abandoned the transaction in step
8. If the commitment verifies, A cannot repudiate that it has
sent the commitment to B. All the server needs to check
is whether A has computed the commitment over a valid

chunk. To verify this, the server retrieves and encrypts the
chunk that B complains about, using the key k and computes
the MAC using the shared key KSA. If this recomputed com-
mitment matches A’s commitment, it proves that A has sent
the valid content, and B is framing A; otherwise, it proves
that A has sent invalid content to B. A misbehaving client
is blacklisted by the server and its peers. Requests involv-
ing the misbehaving client are no longer processed. Future
complains concerning the misbehaver are ruled against it.

2.3 Credit Management
Dandelion can be used for both free and paid content. In
both cases, clients spend ∆c > 0 credit units for each chunk
they download from a client and earn ∆r > 0 credit units for
each chunk they upload to a client. A client can acquire a
file chunk only if its credit is greater or equal to the chunk’s
cost. To prevent collusions we set ∆c = ∆r, so that two col-
luders cannot increase the sum of their credit.

In the free-content case, each client is given an initial
small amount of credit when it first registers with the server.
This initial credit enables a new user to download only a few
chunks when it joins the Dandelion swarm. Thus, a client
is incentivized to upload to others in order to accumulate
credit to be used towards downloading the complete con-
tent. Consequently, clients upload chunks proportionally to
the number of chunks they download.

In the paid content case, a provider may redeem a client’s
credit for monetary rewards, such as discounts on content
prices or service membership fees, similar to the mileage
programs of airline companies. Therefore, a client could be
awarded sufficient initial credit to download the complete
file from other clients, and it would still be motivated to
earn credit.

2.4 Discouraging unauthorized content dis-
tribution

In Dandelion, rational authorized clients are discouraged
from serving content to unauthorized clients. This is be-
cause a server does not award them credit for illegitimate
transactions. Clients are able to verify the legitimacy of re-
quests for service (as described in Section 2.2), hence they
can avoid wasting bandwidth to send encrypted chunks to
unauthorized peers. Furthermore, due to this ability, clients
can be held liable if they choose to send plaintext contents
to unauthorized clients. These properties discourage users
from using Dandelion for illegal content replication and
make our solution appealing to distributors of copyright-
protected digital goods.

3 Preliminary Evaluation
We implemented a prototype of Dandelion in C under
Linux, and conducted a preliminary evaluation of its per-
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Dandelion Server
Dandelion Operation Size Time (ms)
Verify decryption key request 125 bytes 0.018
ticket (MAC)
Decrypt decryption key 40 bytes 0.087
Transmit decryption key response 92 bytes ∼ 1.36
Receive decryption key request 148 bytes ∼ 1.81
Query and update credit base N/A 1.08
(SQLite)
Receive chunk request 56 bytes ∼ 1.07
Transmit chunk 256 KB ∼ 2209

Dandelion Client
Dandelion Operation Size Time (ms)
Encrypt/decrypt chunk 256 KB 4.1
Encrypt/decrypt chunk 16 KB 0.35
Commit to encrypted chunk 256 KB 1.45
(hash and MAC)

Table 1: Timings of per-chunk Dandelion operations. The
server and client is rate-limited to emulate Ethernet II 1
Mbps uplink and 1 Mbps downlink.

formance on PlanetLab. This section describes our imple-
mentation and the results of our PlanetLab experiments.

3.1 Prototype Implementation
We implemented Dandelion’s cryptographic operations us-
ing the openssl C library and the credit management system
using the lightweight database engine of the sqlite library.

Our server implementation draws from the Flash [19]
web server’s Asymmetric Single Process Event Driven Ar-
chitecture and the Staged Event Driven Architecture [10].
Both architectures assign thread pools to specific tasks.

When a disk read or a database operation is required by
a request, Dandelion’s main thread reads requests from the
network and dispatches them to a synchronized producer-
consumer queue served by a pool of disk access or database
access helper threads, respectively. When a helper thread
finishes its operations, it dispatches the request to another
thread pool (next stage) for subsequent processing. We use
the zero-copy sendfile() system call, which is called by the
disk access threads. The network operations use TCP, are
asynchronous and are are executed by the thread responsible
for the last stage of request processing.

This design exploits parallelism and maintains good per-
formance when both small and cached files or large disk-
residing files are requested from the server itself. In addi-
tion, it does not bind the number of concurrent connections
or pending requests to the number of processes/threads that
the OS can efficiently accomodate simultaneously.

3.2 Experimental Results
We first evaluate the computational costs of a Dandelion
server. In a flash crowd event, the main task of a Dande-
lion server is to process key decryption requests and send
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Figure 2: The y axis shows the achievable aggregate down-
load throughput of Dandelion clients when the server re-
sponds to: a) requests for keys used to decrypt 256 KB en-
crypted chunks; b) requests for keys used to decrypt 16 KB
encrypted chunks; and c) requests for chunks. The x axis is
the specified aggregate client request rate.

short responses to those requests. To process one decryp-
tion request, a server performs one HMAC operation and
one block cipher decryption on small messages. Further-
more, it performs one query and two update operations on a
credit database. Lastly, it transmits the decryption key.

In our experiments, we deployed a Dandelion system
with one server and 100 clients. The server runs on Linux
2.6.14 on a 1.7 GHZ/2 MB Pentium M CPU and 1 GB
RAM. To stress our design and emulate a typical resource-
limited server with Ethernet II 1 Mbps uplink and 1 Mbps
downlink, we rate-limited our server’s and client’s upload
and download rate at the application layer.

We let the Dandelion clients send the following two
types of requests to the server and benchmarked the client
download throughput along with the processing costs. The
first type was requests for decryption keys, which emulate
the load on the server during peer-serving. The second type
was requests for file chunks directly from the server. The
file resided in memory in its entirety for the duration of the
experiment. Each client sent requests at a rate ranging from
0.001 to 10 requests/sec. As the request rate increased, the
client would send a new request prior to receiving the com-
plete response from the server. Also as the request rate
increases and the server’s receiver buffers get full, clients
would not send new requests at the rate specified because
the server would advertizes 0 byte window or the previous
request would be pending tobe sent. For each rate, the ex-
periment duration was 10 minutes and the results were av-
eraged over 10 experiments.

Table 1 shows the cost for each operation. As can be
seen, the cryptographic operations of Dandelion are highly
efficient, as only symmetric cryptography is involved. From
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these results we conclude that in our experimental configu-
ration the server’s bottleneck is most likely to be its down-
load link. A Dandelion client can encrypt and decrypt a 256
KB chunk much faster than download it or transmit it at 1
Mbps.This result suggests that the client’s processing over-
head does not affect its upload or download throughput.

Figure 2 compares the case in which Dandelion clients
send decryption key requests to a server, as if they peer-
serve each other, with the case in which clients request the
file directly from the server, i.e., the HTTP/FTP-like down-
loading. The curves show that a Dandelion server running
on a commodity PC with a 1 Mbps Ethernet uplink and 1
Mbps downlink can process up to ∼420 decryption key re-
quests per second, effectively serving up to ∼1680 clients
that download 256 KB chunks at 64 KB/s from other clients.
They also show that with a chunk size of 256 KB, the Dan-
delion clients’ download throughput would be almost 990
times higher than the throughput yielded when the clients
request the file directly from the server. A smaller chunk
size reduces the performance gain, as a server must process
more decryption key requests.

The cost of a complaint is higher because it involves
reading a chunk, encrypting it with the sender client’s key
and hashing the encrypted chunk. However, the server
blacklists misbehavers, thus it does not repeatedly incur the
cost of complaints sent by them.

4 Related Work
This section briefly compares our work with related work.

Swarm file downloading protocols. Dandelion is in-
spired by swarm downloading protocols such as Bittor-
rent [8] and Slurpie [24]. A key difference of our work is
its robust incentive mechanism. Slurpie does not provide
incentives for peer-serving. Although Bittorrent employs
rate-based “tit-for-tat” incentives, these do not punish free
riders [15] due to the specifics of its unchoking mechanism.
In addition, a free rider can enhance its advantage by obtain-
ing a larger than normal initial partial view of the BitTorrent
network. In this way, a peer can discover many seeders and
choose to connect to them only [17], increasing his down-
load rate. It can also increase the frequency with which it
gets optimistically unchoked by connecting to all leechers
in its large view [25].

Furthermore, as there is no robust mechanism to moti-
vate seeding in BitTorrent, the number of clients that seed
for long periods of times is very small [21]. In contrast,
credit in a Dandelion system provides robust incentives for
clients to seed files, which will improve file availability and
download completion times.

Lastly, Dandelion has the desirable feature that rational
clients have no incentives to serve unauthorized peers, as in
such case the server will not reward them. In BitTorrent,
content access policies are enforced by requiring password-

based authentication with the tracker. However, an unautho-
rized peer can join the network simply by finding a single
colluding peer that is willing to share its swarm view with
it. The unauthorized peers can then download content from
authorized peers, which have the incentives to serve them as
long as the unauthorized peer is tit-for-tat compliant. As a
result, a single authorized but misbehaving peer can facili-
tate illegal content replication at a large scale. In an upcom-
ing BitTorrent version, access policies are implemented by
accelerating legitimate content transfers through the use of
strategically placed caches, which can be accessed only by
authorized clients [1, 4]. Our scheme does not require third
party infrastructure.

Escrow services in peer to peer networks. Horne
et al. [14] proposed an encryption-based fair-exchange
scheme for peer-to-peer file exchanges. Dandelion shares
similarities regarding motivation and the general approach
with their work, but differs in specific protocol design.
Their scheme divides and transmits a file in chunks to en-
able erasure-code-based techniques for detecting cheaters
that upload invalid content, whereas we divide files to
support efficient and incentivized peer-to-peer distribution.
Their scheme detects cheating with probabilistic guaran-
tees, whereas Dandelion deterministically detects and pun-
ishes cheaters. In addition, their scheme requires that all
chunks for a given file come from a single peer, which ren-
ders the distribution pipeline inefficient.

Fair-exchange schemes. Among the proposed solutions
for the classic cryptographic fair-exchange problem, our
scheme bears the most similarity with the one by Zhou et
al. [32]. Their scheme also encrypts the content to be ex-
changed and uses an online trusted third party (TTP) to re-
lay the decryption key. A key difference is that Zhou et
al.’s scheme uses public key cryptography for encryption
and for committing to messages, and both of the exchange
parties need to communicate with the TTP for each transac-
tion. In contrast, our scheme uses efficient symmetric key
encryption, and only one client needs to communicate with
the TTP per transaction. The technique they use to deter-
mine whether a message originates from a party is similar
to the one used by our complaint mechanism, but our work
also addresses the specifics of determining the validity of
the message.

Pairwise credit-based incentives. Swift [29] introduces
a pairwise credit-based trading mechanism (barter) for peer-
to-peer file sharing networks and examines the available
peer strategies. Scrivener [9] is also an architecture in which
peers maintain pairwise credit balances to regulate con-
tent exchanges among each other. In contrast, a Dandelion
server maintains a central credit bank for all clients.

Global credit-based incentives. Similar to Dandelion,
Karma [30] employs a global credit bank, with which
clients maintain accounts. It distributes the credit auditor

5



set of a peer among the peer’s k closest neighbors in a DHT
overlay [22]. Karma uses certified-mail-based [23] fair ex-
change of content for reception proofs, which requires both
peers to communicate with the mediating auditor set for
each exchange. Unlike Dandelion, Karma requires public
key cryptographic operations at the peer side. Karma pro-
vides probabilistic guarantees with respect to the integrity
of the credit-base. In the presence of numerous malicious
bank nodes or in a highly dynamic network, the credit-base
becomes difficult to maintain reliably.

5 Conclusion and Future Work
This paper describes a cooperative content distribution sys-
tem: Dandelion. Dandelion’s primary function is to offload
a server during a flash crowd event, effectively increasing
availability without overprovisioning. A server delegates a
client with available resources to serve other clients. We
use a cryptographic fair-exchange technique to provide ro-
bust incentives for client cooperation. The server rewards
a client that honestly serves other clients with credit. A
client can redeem its credit for further service or mone-
tary rewards. In addition, the design of Dandelion discour-
ages unauthorized content exchange. Since a server medi-
ates all fair exchanges, clients who serve unauthorized re-
quests are not rewarded, therefore it is in their best interests
not to waste their upload bandwidth to serve unauthorized
clients. A preliminary evaluation shows that Dandelion has
low processing and bandwidth costs on the server side. A
resource-limited server may support a few thousand simul-
taneous clients. We are currently fine-tuning Dandelion’s
prototype implementation on PlanetLab.
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A Appendix
A.1 Detailed Protocol Description
This section provides a detailed description of the Dande-
lion peer-serving protocol.

A.1.1 Setting and Assumptions

We assume that the server S keeps a table matching any
file F with a pool of available clients currently download-
ing or seeding the file. A client A gets a temporaty shared
key KSA with S. KSA can be efficiently computed as KSA =
H(KS,〈A〉,〈i〉). The notation 〈X〉 denotes a client X’s Dan-
delion ID, KS is S’s master secret key, H is a cryptographic
hash function such as SHA-1, and 〈i〉 refers to a time pe-
riod. Our protocol enables S to tolerate some lag in the 〈i〉
assumed by a client. The temporary shared keys are deliv-
ered from the server to the client over a secure channel. For
every client, the server S maintains database entries of that
client’s credit, virtual money which can be used to purchase
more services.

A.1.2 Client-Serving Protocol

The protocol starts with the client B sending a request for
file 〈F〉 to S.

1) B −→ S: [server file request] 〈F〉

If B has access to F, S chooses a random short list of
clients 〈A〉list, which are currently downloading or seed-
ing the file. Each list entry, besides the Dandelion ID of
the client, also contains the clients inbound internet ad-
dress. Also for every client in 〈A〉list, S sends a ticket
TSA = MACKSA [〈A〉,〈B〉,〈F〉, ts] to B. MAC is a message au-
thentication code (e.g. an HMAC), ts is a timestamp and
〈A〉 is a client in 〈A〉list. The tickets TSA are only valid for a
certain amount of time T (considering clock skew between
A,S) and allow B to request chunks of file F from client’s A.
When TSA expires and B still wishes to download from A it
requests a new TSA from S. As commonly done to maintain
file integrity, S also sends the SHA-1 hash h〈ch〉 = H(ch) for
all chunks ch of the file F S may charge B for the issuance
of tickets TSA to prevent misbehaving clients from wasting
server resources.

2) S −→ B: [server file response] TSA list,〈A〉list,h〈ch〉list,

〈F〉, ts,〈i〉S

The client B forwards this request to each A ∈ 〈A〉list

3) B −→ A: [client file request] TSA,〈F〉, ts,〈i〉S

If current − time ≤ ts+T and TSA is not in A’s cache, A
verifies if TSA = MACKSA [〈A〉,〈B〉,〈F〉, ts].1 As long as B re-
mains connected to A, it periodically renews its TSA tickets.

1The purpose of this check is to provide a simple mechanism for pro-
tecting A from DoS attacks from unauthorized clients and to allow clients
to filter request for unauthorized file uploading.

If the verification fails, A drops this request. Also, if 〈i〉S is
greater than A’s current epoch 〈i〉A, A learns that it should
renew its key with S soon. Otherwise, A caches TSA and it
starts running a protocol with B for file chunk selection. A
reports periodically to B what chunks it has for as long as
the timestamp is fresh. Also, B reports its available chunks
to A and A can request them from B, after he retrieves TSB

from S. B determines which chunks it wishes to download
and from which clients according to a chunk selection al-
gorithm. For presentation purposes, each of the following
messages involves one chunk, whereas in practice informa-
tion for multiple chunks may be bundled in a message.

4) B −→ A: [client chunk request] TSA,〈F〉,〈ch〉, ts,
〈i〉S

B’s requests are served as long as the timestamp is fresh
and TSA is cached or verifies. For each requested chunk, A
retrieves and encrypts it using a symmetric-key encryption

Enc, as C = Enc
iv〈ch〉
k〈ch〉

(ch), where k〈ch〉 is a randomly cho-

sen key distinct for each chunk, and iv〈ch〉 is the encryption
Initial Vector (IV). A encrypts the random key with the one
it shares with the server, as e = EncivSA

KSA
(k〈ch〉, iv〈ch〉). Fi-

nally, A hashes the ciphertext C as hc = H(C) and computes
a MAC value TAS = MACKSA [〈A〉,〈B〉,〈F〉,〈ch〉,e,hc, ts].
Note that A can pre-compute several values (k〈ch〉,e,C,hc),
so the on-line cost of A can be reduced to one MAC com-
putation.

5) A −→ B: [client chunk response]TAS,〈F〉,〈ch〉,e,C, ts,
〈i〉A

B retrieves C, computes its own hash hc′ = H(C) and
forwards the following to S.

6) B −→ S: [decryption key request]〈A〉,〈F〉,〈ch〉,e,hc′,
ts,TAS,〈i〉A

If timestamp ts is fresh enough, ticket TAS is not in
S’s cache, and 〈i〉A is not too much off, S checks if
TAS = MACKSA [〈A〉,〈B〉,〈F〉,〈ch〉,e,hc′, ts], where key KSA

is computed using KS, 〈A〉, and 〈i〉A. The verification may
fail either because hc′ is invalid due to transmission error in
step (5) or because either A or B are misbehaving. Since
S is unable to determine which one is the case, it does not
punish either clients. Yet it notifies B, which is expected to
remove A from its client list in case A repeatedly sents in-
valid messages. If B keeps sending invalid decryption key
requests, S penalizes him. If the verification succeeds, S
caches TAS, and checks whether B has sufficient credit. It
also checks again whether B has access to the file F. If
B is approved, it charges B and reward A. S also decrypts
(k′〈ch〉, iv

′
〈ch〉) = DecKSA(e), and sends them to B.

7) S −→ B: [decryption key response]〈A〉,〈F〉,〈ch〉,
(k′〈ch〉, iv

′
〈ch〉
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B uses (k′〈ch〉, iv
′
〈ch〉) to decrypt the chunk as ch′ =

Dec
iv′〈ch〉

k′
〈ch〉

(C). If the decryption fails or if H(ch′) 6= h〈ch〉 (see

item (2)), then B complains to S by sending the following
message.

8) B −→ S: [complaint],〈A〉,〈F〉,〈ch〉,TAS,e,hc′, ts,〈i〉A

S ignores this message if timestamp ts is not fresh
enough (using much more liberal time interval then
before) or if this complaint is already cached. If
TAS 6=MACKSA [〈A〉,〈B〉,〈F〉,〈ch〉,e,hc′, ts] S punishes B,
since B had already been notified in step (6) that TAS is in-
valid. If TAS verifies, S caches this complaint, recomputes
KSA as before, decrypts (k′〈ch〉, iv

′
〈ch〉) = DecKSA(e) once

again, retrieves ch from its storage, and encrypts ch him-

self using the above key and IV vector, C′ = Enc
iv′〈ch〉

k′
〈ch〉

(ch).

If the hash of the ciphertext H(C′) is equal to the value hc′

that B sent to S, then S decides that A has acted correctly,
B’s complaint is unjustified, S drops this complaint request
and blacklists B or charges B a large amount. Otherwise, S
decides that B was cheated by A, removes A from its pool of
active clients, blacklists or charges it, and issues an update
that cancels the corresponding update on A’s and B’s credit.
Lastly, B requests the chunk from another client or S itself.

A.2 Security Analysis
We claim the following security properties of our protocol:

1. If an honest client B gets charged (his credit de-
creases) by S, then B must have received correct chunk
ch, even if the transaction involved a malicious client A.
This is because B gets charged only if the data S gets in
steps (6) and (8) verifies and if hc′ = H(C ′). Since hc′

is a hash that B computes itself on C received from A,
C = C ′. Furthermore, since the same k, iv pair is used by S
to encrypt ch into C ′ and by B to decrypt C into ch ′, then
C = C ′ implies that ch ′ = ch.

2. If an honest client A always encrypts chunk ch anew
when servicing a request, then even if client B is malicious,
if B gets ch in this protocol instance then A also gets credit
from S. This is because if A encrypts ch using one-time key
k〈ch〉, iv〈ch〉, then B sees k〈ch〉, iv〈ch〉 only in the encrypted
form e. The only way for B to get it (short of stealing
key KSA from A or S) is to get it decrypted by S, in which
case S will log a charge against B. The only way B can
possibly avoid this charge is by sending (8) which includes
TAS and hc′ s.t. TAS = MACKSA [〈A〉,〈B〉,〈ch〉,e,h′, ts], but
such that hc′ 6= H(C ′) where C ′ is computed by S in that
step. However, since we consider this attack only against
an honest A, the TAS MAC value will verify only if all the
values it includes are the ones that A sent to B, and if hash
hc ′ is correctly computed on ciphertext C included in that
transfer. But if that’s the case then S will decrypt e to the

same k〈ch〉, iv〈ch〉 pair that A used, hence S’s encryption C ′

will be the same as the C that A computed. Consequently,
hc′ will be equal to H(C ′), hence B is not able to reverse its
charge.

3. If A pre-computes only one encryption of some chunk
ch and services requests for that file always using the same
ciphertext (C,e), then A runs some risk that colluding B’s
can attempt to use A to download ch with only one of the
B’s charged for it. Namely, the colluding clients B’s have
some chance of getting tickets to the same client A from S,
so each of them would receive the same encryption C of ch
from A. Then one B can incur a charge to retrieve key k〈ch〉,
but it can share this key with the remaining colluders. The
chance of success in such attack decreases if the list of the
clients returned by S is short and if A pre-computes many
ciphertext tuples (k〈ch〉,e,C,h) for the same ch, and services
a request by choosing one of them at random. Note that A
can individually adjust how much to pre-compute, or even
to always encrypt ch on-line.

4. A malicious client B can always abandon any instance
of the protocol or intentionally send invalid messages to
S (e.g hc′ 6= H(C)). In such case, A does not receive any
credit even though B consumed A’s resources (but also
B does not receive the file in that instance, as we argue
above). This is a denial of service attack against A, and we
mitigate it by having S issue a short-lived MAC’ed ticket
TSA only to authorized clients. Therefore B can stage this
attack against A only for as long as the ticket is valid. If
B is identified as misbehaver client, he will not be issued
new tickets. In addition, S may charge B for the issuance
of tickets TSA effectively preventing B from maliciously
expending both A’s and S’s resources.

5. Two clients B and A could agree to share a file that
B is not entitled to receive based on a file access policy and
pretend that A is uploading a file to which B has access. In
that way, A would get paid, therefore it has incentives to
provide the whole file and violate the policy. However, this
is problematic because the complaint mechanism can only
rule in favor of B, therefore A cannot trust that B will allow
A to be rewarded for his service.
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