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Compression of Individual Sequences via
Variable-Rate Coding

JACOB ZIV, FELLOW, IEEE, AND ABRAHAM LEMPEL, MEMBER, IEEE

Abstract—Compressibility of individual sequences by the class of gener-
alized finite-state information-lossless encoders Is investigated. These en-
coders can operate in a variable-rate mode as well as a fixed-rate one, and
they allow for any finite-state scheme of variable-length-to-variable-length
coding. For every individual infinite sequence x a quantity p (x) is defined,
called the compressibility of x, which is shown to be the asymptotically
attainable lower bound oa the compression ratio that can be achieved for x
by any finite-state encoder. This is demonstrated by means of a construc-
tive coding theorem and its converse that, apart from their ssymptotic
significance, also provide useful performance criteria for finite and practi-

cal data-compression tasks. The proposed concept of compressibility is also

shown to play a role analogous to that of entropy in classical informstion
theory where one deals with probabilistic ensembles of sequences rather
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than with individual sequences. While the definition of p (x) allows a
different machine for each different sequence to be compressed, the
constructive coding theorem leads to a universal algorithm that is asymp-
totically optimal for all sequences,

I. INTRODUCTION

N A RECENT paper [1}, data-compression coding

theorems and their converses were derived for the class.
of finite-state encoders that map at a fixed rate input
strings drawn from a source of a letters into equally long
strings oVer an alphabet of 8< « letters. In the context of
data-compression, the aim is to minimize the number of
bits /symbol log, 8, while securing zero or negligibly small

-distortion. For every individual infinite sequence x, this

minimal bit/symbol rate was shown in [1] to be equal to a

‘quantity H(x) that, in analogy with the Shannon entropy

(which is defined for probabilistic ensembles rather than
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individual sequences), corresponds to the smallest coding
rate for x under which the decoding error-rate can be
made arbitrarily small. :

In this paper, compressibility of individual sequences is
investigated with respect to a broader class of encoders
that can operate in a variable-rate mode as well as in a
fixed-rate one and that allow for any finite-state scheme
of variable-length-to-variable-length coding.i On the other

hand, no distortion is allowed, and the original data must:
be fully recoverable from the compressed image. This'

class of encoders can be modeled by the class of finite-
state information-lossless generalized automata [2], [3].

In our model, an encoder E is defined by a quintuple
-(S,A,B,g.f) where S is a finite set of states, 4 is a finite
input alphabet, B is a finite set of output words over a
finite output alphabet, g is the “next-state” function that
maps S X 4 into S, and f is the output function that maps
S X A into B.

By allowing the words in B to be of different finite
lengths, we allow for block-to-variable coding, and by
including in B the null-word A (i.e., the “word” of length
zero), we allow for any finite-state scheme of variable-to-
variable coding.

When an infinite sequence x=xx,---, x,EA4 is fed
into E=(S,A4,B,g,f), the encoder emits an infinite
sequence y=y,y, -, y;E B while going through an in-
finite sequence of states z=2z,z,-- -, z; €S, according to

yi=fz,x;)

Z,+l=g(sz,~), i=1,2,---
where z; is the state of E when it “sees” the input symbol
X

A finite segment xx,,,---x, 1<i<j, of x will be
denoted by x/; similar notation will naturally apply to
finite segments of other sequences. Following conven-
tional practice, we shall extend the use of the encoder
functions f and g to indicate the output sequence as well
as the final state, which results from a given initial state
and a finite sequence of input letters. For instance, we
shall occasionally write f(z),x]") for y{' and g(z,,xJ") for
Zpty

An encoder E is said to be information lossless (IL) if for
all z, €S and all x'"€4", n>1, the triple
{21,f(2,x),8(z}, %)} uniquely determines x/. E is said
to be information lossless of finite order (ILF) if there exists
a finite positive integer m such that for all z; €S and all
x" €A™, the pair {z,,f(z,,x{")} uniquely determines the
first input letter x,. It is easy to verify [3] that if E is ILF
thenzit is also IL, but there exist IL encoders that are not
ILF.

'We regard block-to-block, block-to-variable, and variable-to-block as
special cases of variable-to-variable coding,

Even [3] presented an algorithm for determining whether a given
automaton is either IL, ILF, or neither. For an automaton with s states,
the algorithm will take a number of steps that are proportional to s2.

In the sequel, we assume the IL or the ILF property
depending on which leads to a stronger result. For exam-
ple, we prove a coding theorem (Theorem 2) by means of
an ILF construction, while its converse (Theorem D is
proved under the broader IL assumption.

To simplify the discussion without any real loss of
generality, we also assume throughout that the output
alphabet of the encoder is binary and that the initial state
z, is a prescribed fixed member of the state-set S.

Given an encoder E=(S,4,B,g,f) and an input string
xy, the compression ratio for x] with respect to E is
defined by
L(yT)

ny &
pelxl) & SR (M)
where a=|Al, y=f(z,,x{), L(y!)=E".,{(), and [(y,) is
the length in bits of y, € B. (Note that when y,=A, I( V)=
0)
The minimum of pg(x]) over the class E(s) of all
finite-state IL encoders with [4|=a and |S| < s is denoted

by pey(x7). That is

ny & : n
PeH(x1) Efggzs) {Ps(xl )} ()
Furthermore let
Pesy(x) 2 lif'n_igp Pes(XT) (3)
and
o .
p(x) = Slg{}c Pe(sH(X)- (4)

It is clear that for every individual sequence x, 0 < p(x)
< 1. This normalized quantity p(x) that depends solely on
x will be referred to as the (finite-state) compressibility of
x. In Theorem 1 (the converse-to-coding theorem), we
derive a lower bound on pg(x{") and show that in the
limit this bound approaches the normalized Lempel-Ziv
complexity [4] and becomes a lower bound on the com-
pressibility of x. In Theorem 2 (the coding theorem), we
demonstrate, using a variant of the author’s universal
compression algorithm [5), the existence of an asymptoti-
cally optimal universal ILF encoding scheme under which
the compression ratio attained for x tends in the limit to
the compressibility p(x) of x for every x. It is important to
note that apart from their asymptotic significance, the
results of Theorems 1 and 2 also provide useful perfor-
mance criteria for finite (and practical) data-compression
tasks.

The concept of compressibility as defined here, like the
quantity H(-) in [1], seems to play a role analogous to that
of entropy in classical information theory where one deals
with probabilistic ensembles of sequences rather than with
individual sequences. This analogy is reinforced by Theo-
rems 3 and 4, where our concept of compressibility is
examined from a probabilistic point of view.

The remainder of this paper contains two parts: de-
scriptive part (Section II) where all the results are stated
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and discussed and a formal part (Section III) where all
proofs except that of Theorem 2 are given. The proof of
Theorem 2, which is constructive and thus informative, is
presented in the mainstream of Section II.

II. STATEMENT AND DISCUSSION OF RESULTS

Our first result establishes a lower bound on the com-
pression ratio attainable by any encoder E, from the class
E(s) of IL encoders with no more than s states, for any
finite input string x;' over an alphabet 4 of a letters. In
the theorem below and elsewhere in the sequel, log k
means log,k.

Theorem 1 (Converse-to-Coding Theorem): For every x{
EA"

2s?
nloga

c(x!)+s?
45? )

where ¢(x]) is the largest number of distinct strings (or
“phrases”) whose concatenation forms x;'. (The proof of
this theorem ts given in Section III.)

c(x)+s2 [
nloga

Pes)(xT') >

It was shown in an earlier paper [4, Th. 2] that for all
xfEA"
nloga

¢z (xf)=1< C(x{')<—-—(1_£n) Tog 7

(6)
where ¢; »(x{) is the Lempel-Ziv complexity of x; and ¢,
satisfies lim, . ¢,=0. From (5) and (6) it follows that

n

c(xy') log c(x7')

x)=lims ">l
pE(s)( ) n_)::ppE(:)(xl )>lll"'l’l_)S°‘;lp n log a

which implies the bound (7a) of Corollary 1. The bound
(7b) of this corollary follows directly from (5) and (6).
Corollary 1 (Compressibility Bounds):

c(x1') log e(x7')

p(x)=}11,1g°pg<,)(x)>li§1n_+sct_gp nTog a (7a)
p(x) > lim sup hr;l_)sgp T loga
k=1
- Y e(xii D) log e(x§1P7). (Tb)
i=0
It also follows from (6) and (7) that lim, . sup

(e 2(x]) log n)/(n log a), the normalized Lempel-Ziv
complexity of x, serves as a lower bound on the compress-
ibility p(x) of x.

' An interesting application of the compressibility bound
1s the use of (7) to identify certain infinite sequences x
that, while being rather easy to describe, satisfy p(x)=1
and thus are incompressible by any finite-state IL en-
coder. To illustrate this point, let u(k) denote the binary
sequence of length k2* that lists, for example, in lexico-
graphic order, all the 2* binary words of length k, and let

ui® =y (Du(2)- - - u(k)
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where
k .
n(k)=> i2'=(k—1)2*'+2. .
i=1

It is easy to verify that when each u(i) is parsed into its 2/
distinct i-tuples, we obtain a parsing of #* into a maxi-
mum number of distinct phrases, namely,

c(ui®) = él 2i=2k+1_2
For example, u® is parsed as follows:
u?®=0,1,00,01,10, 11,000,001,010,
011,100,101,110,111.
For this particular sequence u, inequality (7a) implies

®

(2k+l__2) log (2k+l___2) -
(k—1)2%+'+2 '

In our next result we employ a variant of the authors’
universal compression algorithm [5] to demonstrate the
existence of an ILF compression scheme under which, for
every x, the compression ratio attained for x| tends to
p(x) as n tends to infinity.

p(u)> lim
k—oo

Theorem 2 (Coding Theorem): For every n >0 there ex-
ists a finite-state ILF encoder & with s(n) states that
implements a block-to-variable code with the following
performance characteristics.

i) For any given block length n and every input block
x/', the compression-ratio attained by & satisfies

) e Qalexr)+1)); (9

nloga
the compression ratio attained for successive blocks
x('_,f'_,),,“, i=1, ‘2,- -+, satisfies the same inequality with
x(‘,ff_.l),,ﬂ replacqg _x,".
ii) For every finite s,

Ps(x7') < pgs(x7) + 8,(n)

ps(x1') <

(10)
where
nILngO 8,(n)=0.

i) Given an infinite input sequence x, let pg(x,n)
denote the compression ratio attained for x by & while
feeding & with successive input blocks of length n. Then
for any €>0

(11)

pg(x,n) <p(x)+8,(x,n)
where
nli_)ngo 8.(x,n)=e.

Proof: The proof is constructive, and before going
into computational details, we present a short outline of
the construction. For the encoder &, we employ an ILF
finite-state machine that realizes a concatenated coding
scheme by combining a fixed block-to-variable outer code
with a state-dependent variable-to-variable -inner code.
The inner code is used to encode sequentially and state
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dependently growing segments of an input block of rela-
tively large length n. Upon completion of a block the
machine returns to its initial state, thus “forgetting” all
past history before starting to encode the next input block.

The segments of a block that serve as input words of
the inner code are determined according to a so-called
incremental parsing procedure. This procedure is sequen-
tial, and it creates a new phrase as soon as a prefix of the
still unparsed part of the string differs from all preceding
phrases. The parsing is indicated as

X7 = X Xy X 1" X ng £0, R,y
(12)
and is called incremental if the first p words x,’;_l w1
1<, <p, are all distinct and if for all j=1,2,---,p+1
when' n,—n;_ > 1 there exists a positive integer i <j such
that x; .= x,;'i i

It is clear from this definition that if (12) is an incre-
mental parsing of x{, then n,=1. The last word x, ,; may
or may not be distinct from the first p words, and for
every word of length /> 1, its prefix of length /—1 can be
found as an earlier word of the parsing. For example, (8)
is an incremental parsing of u®.

Now let x° | = £ ), the word of length zero, and (since
x!=Ax]") let us adopt the convention that x," ., is always
the initial word of an incremental parsing. "Also given a
word w, let d(w) denote the word obtained by deleting the
last letter of w. It follows that for every j=1,2,---,p+1
there exists a unique nonnegative integer m(j)=i<j such
that d( AD=X e

The mcremental parsing of a given block xi' and the
coding of the words determined by it are executed sequen-
tially as follows. To determine the jth word, 1<j<p+1,
we take n; to be the largest integer, not exceeding n, for
which d(x ,+1) equals some earlier word, for example,
X b1 and we set w(j)=i (e.g., for j=1, n,-—l xl—x,,
d(x,))=A, and 7(1)=0). Having determined x it is
encoded into the base-2 expansion of the mteger

S+

I(xp ) & 7(j)a+ I (xy)

where I, is a predetermined mapping from the input
alphabet 4 onto the set of integers 0 through a—1. Since
0<n(j)<j—1, it follows that

0<I(xp ) <(—Da+a—l=ja—1,

and the number of bits required to encode the jth word is
=[log (ja)], the least integer that is not smaller than
log (ja).

It is easy to verify that this code is uniquely decipher-
able with bounded delay. Given a binary sequence b=
bb,- -+ that begins with the coded image of xi', we can
determine x| sequentxally by reversing the encoding
procedure Namely, b is parsed into the codewords
bk +1,bk .+, which are decoded into the original
phrases accordmg to the followmg recursive procedure.
Initially, set j=0, k;=0, and n;=0. Given the current

values of j, k and n; <n, procede with the following.

1) Setk _,,,—-k + ['log ((J+1)a)]

i) Take I(x, ’5“,) to be the integer whose base-2 repre-
sentation is glven by b '+4, and determine the nonnegative
integers i and r that sat:sfy

I(x,5+',)=za+r, 0<r<a—1.

iii) Take a= IA (r), and if m+(m—n_,+1)>n, set
n],,,—n, take x,,, to be the word formed by the first
n; letters of x, ,,a, and stop. Otherwise, set n,, ,=n,
+"i—ni--l+ 1, take I =Xy 1105 increment j, and re-
turn to (i).

For continuous decoding of successive blocks, the
“stop” instruction in iii) should be replaced by the “reset”
instruction: set j, k;, and n; to their initial zero value and
return to i).

The total number of bits that go into the coding of an
input block x that is parsed incrementally into p+1
words is given by

p+1 p+1
L=3 L= [log (ja)].
j=1 =1
Hence
p+l
L< Y log Qaj)<(p+1)(log (p+1)+log (2a)).
jl

Since p <c(x1 ), the maximum number of distinct words
into which xJ can be parsed, it follows that the compres-
sion ratio attainable by the described encoder & for x{
satisfies

c(xp)+1

pS(xl)< lOg

log [2a(c(xf)+1)],
which proves (9).
From (5) and (9) after some manipulation, we obtain

A(c) (13)

nloga

ps(x") < pgio(x7) +
where ¢=c(x[") and
2a(c+1)
A(c)=(c+1) log ————=
(c)=(c+1)log =3
—(s*=1) log (c+5%) +(c+5?) log (4s%).
It is easy to verify that A(c) increases with ¢, which by (6)
implies
nloga
8,(n) = nloga ((l—e,,) logn)
It is also easy to verify that
Lim § ,(n)=0,

which together with (13) and (14) proves (10).
Finally, the compressmn attained by our encoder & for
an infinite sequence x is by definition:

A(c)
nloga’

(14)

S 19

il

pe(x,n)= hmsup o log
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where L; is the number of bits used to encode the ith
block x._ 1y, of x. Since (9) and (10) hold for any input
block of length n, we can write

o =06 () <paco (e + (). (16)
From (15) and (16) we obtain
k
ps(x,n) <8 (n)+ ﬁinjsp iK i;} PEE (X(i-1yn1)s
which reduces to
pg(x,n) <8,(n) +pg(s)(x)- (17)

where lim,_, . 6,(n)=0. By (4), we can write pE(s)(x) =p(x)
+6*(x), where lim,_, 8*(x)=0 for all x. Hence given x
and any € >0, there always exists a sufficiently large finite
s for which §¥(x) <e. Since (17) holds for every finite s, it
follows that for any € >0, we can write

pe(x,n) < p(x)+e+8,(n),

which proves (11) with §(x,n) £ e+ 8,(n) and completes
the proof of the theorem. Q.E.D.

It is easy to verify that inequality (7b) and the proof of
Theorem 2 also imply the following corollary.

Corollary 2: Let p(x/) denote the number of phrases in
the incremental parsing of x/. Then for every infinite
sequence x,

p(x)= lim sup lim sup

n-—»00 k—s00

1
kn log a

k
: Eop(x.‘,:I D) log p(x51P").
<

We proceed now to examine the concept of compressi-

bility from a different point of view. Given wE A/, an
arbitrary word of length / over 4, and an input string

X[ €EA" let
w={"
0,

Then the relative frequency of occurence of w in xJ' is

1 n—1 .
o S0, 9)

which can also be mterpreted as a “probability measure”
of we A’ relative to xJ'. The corresponding normalized
“entropy” is then given by
1
[log a

lf xl + l
otherwise

8(xiH,w =% o<i<n—-1L (18)

P(x],w)=

ﬁl(xl”): -

2 P(xl’w) log P(x7,w) (20)

where by definition P log P=0 whenever P=0. Now we
take

ﬁl(x)""]im Sup ﬁ/(xxn) (21)
and
A(x)= Jlim By(x). (22)

The existence of this hmlt is estabhshed in, Section III
where we also prove the following results.
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Theorem 3: For every infinite sequence x

p(x)=H(x). (23)
Theorem 4: If x is drawn from an ergodic source with
entropy H then

Pr[p(x)=H]=1. (29)

Corollary 3: If x is drawn from a stationary source with

entropy H then
Ep(x)=H
where E denotes expectation.

In a recent paper [1], compressibility of an individual
infinite sequence x with respect to an IL fixed-rate en-
coder is measured in terms of a “finite-state complexity”
H(x), and results similar to those obtained here for p(x)
are established there for H(x). Thus the roles played by
p(x) and H(x) for individual sequences are analogous to
that played by the Shannon entropy for probabilistic
ensembles of sequences, and both Ep(x) and EH(x) are
appropriate candidates for a concept of “generalized ent-
ropy” in the nonstationary case.

(25)

III. ProOOFs

Proof of Theorem 1: Given an encoder E € E(s) and an
input string x/, let

n
‘xnl-H nz+l xn,...-&-l

xp=xy
be a parsing of x| into ¢ = ¢(x[") distinct phrases, and let ¢

denote the number of phrases x, ,,, 1<i<c, (where

ny=0 and n, £ n) for which Y +15 the corresponding
output phrase, is j-bits long. Since the input phrases are all
distinct, it follows from the IL property of E that ¢ < 52
for all j. It is also clear that to obtain a lower bound on
the length L(y7) in bits of y]', we may overestimate ¢
Jj=0,1,---, at the expense of =, c;, provided the sum of
all ¢; remains equal to c. Thus if ¢ and r are the nonnega-
tive 1ntegers satisfying c=gs*+r, 0< r < s?, and if
k
g=2 Y+, 2+,

Jj=0

0<A <

then we may assume that ¢;=s5%2/ for 0< j<k, ¢\ =
2Ak-+~r and ¢;=0 forj>k+1 Therefore

c=s22 Y+ s, +r=s2*1+y) (26)
/=0
where
t=Ak—1+-s-’5, @7
and
ko .
L(y1)>s* 3 jY+(k+1)(sA,+7)
j=0
=2 [ (k= 1D2**14+2]+ (k+1)(s?A+7)
=s2(k—1)(2** '+ 1) +5¥k+3+21)
=(k—=1)(c+5%)+25%(1+2). (28)
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From (26) we have Lemma 2 (Generalized Kraft Inequality): For any given
Zt (t+1)s2 IL encoder E with s=|S| states,
k—l—log -2= log -1 [I+—}, N 24
c—s% K= 2 2-Liw) ¢ 2 (1+log ) (30)
* which together with (28) y1elds wed! s*
ot s? _ where
Lon> <c+s’>(1°g : +f) (29) L(w)=min {L(f(z,w))) (1)
where and L(f(z,w)) is the*length in bits of f(z,w), the output
_2 s(t+2) (t+1)s? from E when started in state z and fed with w.
—— —log |1+
c+s? °8 c— st ] Proof: Let k; denote the number of we A’ for which
= 2\ /(o o2 L(w)=j. Then K 2k27/ and a —E ;. By the IL prop-
Let ¢=((+1)s)/(c = 57%). Then erty of E, it is clear that k; < s Tt is also clear that to
- 252 42 2¢ —log (1+¢), obtain an upper bound on K, we may overestimate k;,
c+s?  1+¢ g Jj=0,1,---, at the expense of 2~k provided the sum of
and by (26) and (27) we have all the k remains equal to a’. Thus we can write
b= (Ak + Lz)z-(kﬂ). K< 2 (s2)27 =s*m+1) (32)
K} Jj=0
From the definitions of A, and r it follows that 0< ¢ <1, where m is the integer satisfying
and one can readily verify that over this interval, 2¢ > (1 m—1 m .
+¢) log (1+¢). Hence 73> (25%)/(c + %), which together 2 sU<al<Y s
with (29) yields J=0 J=0
Furthermore

2
L(yt)>(c+s?) log c+;v +2s52,

mM=1+ 2 2!<—+1

Dividing both sides of this inequality by n log «, we =0 52
obtain the bound of Theorem 1. Q.ED. which together with (32) yields (30). QED.
Lemma 1: The limit of (22) exists. Proof of Theorem 3: From the definition of L(w) in
Proof: By (20) and (21), we can write (31), it is clear that for any IL encoder with s states
l n
(I+m)H,, (x)= Tog Pe(x]) =~ loga 2 L(f(z,x))
- lim sup P(x],w) log P(x],w)
n—w wg,m 1 1 = loga 2 IL(f(z,,x,))
1 n—1/ )
l°g hgl—’il"lp uEzA’ ogmp(xl ) >m ’20 L(f(zi41x 1))
P(x{,uv)
-| log ————= +log P(x!",u el
g p(x;,u) g P(x{,u) >— loga ,2 L(xit)). (33)
= lH,(x)+ — hm sup >, P(x},0) By (19), we can rewrite (33) as
1T oedn n—I[+1
r L
. P(xn“v) P(x},u) PE(X]') 2= Tog & ng'P(x“w) (w),

~ og - .
vy P(x7,0) P(x],uv)

By the convexity of the logarithm function, we can further 1 . n
write Pee(¥) > Tor s oz a limsup >, P(x/,w)L(w).

n—00 e 4!

and we obtain

(I+m)H,, ,(x) < lﬁz(x)"'io'é; By (20) and (21), we have
‘limsup 3 P(xf,0)log 3 Pltu) A,(x) = pgis(x) < Tlona L jim sup
n-»>0 pEA™ wedl P(x,",v) g A
which reduces to - > P(x{',w)(log _I?(—)_cl"-;v—)- —L(w))
(I+m)H,,, (x)<IH(x)+mH,(x). wea! v -
Hepce lI;', is sgbadditive in /, and since 0< ﬁ,(x) <1, the = ”01 limsup > P(x],w)log m
limit of (22) exists. Q.E.D. n=o weq! s
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which by the convexity of the logarithm function and
Lemma 2 reduces to

2 2-L(w)

-~ 1 .
—_ <._____
Hy(x) = pge(x) TTog o ln::so\oxp log 2

52 a!
_Iloga(l+10g el

Taking the limit as / approaches infinity, we obtain

}}(x) —Pg)(x) <0, (34)
and since (34) holds for every finite s, we have
A(x)<p(x) (35)

for every infinite sequence x.
Using Huffman’s coding scheme for input blocks of
length /, it is easy to show [6] that
log a
[ 3
which when / tends to infinity becomes
p(x) < A(x) (36)
for all x. Combining (35) with (36) completes the proof.
Q.E.D.

Proof of Theorem 4: Since x is drawn from an ergodic
source, it follows that for every positive integer / and for
every wE A’

p(x) < H(x)+

Pr [ P(x,w)=Pr (w)]=1
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where P(x,w)=lim,_,  P(x],w) and Pr (w) is the proba-
bility measure of w. Therefore, if H;=1/1% <, Pr (w)
log Pr (w), we obtain '

Pr[H/(x)=H]=1,

which when / approaches infinity becomes
Pr[A(x)=H]=1.

From this and Theorem 3, we obtain Theorem 4. Q.E.D.
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